Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop device to measure brain temperature non-invasively

03.05.2011
Non-invasive brain-temperature monitoring could be critical in life-saving cooling therapy

Doctors have long sought a way to directly measure the brain's temperature without inserting a probe through the skull. Now researchers have developed a way to get the brain's precise temperature with a device the diameter of a poker-chip that rests on a patient's head, according to findings presented May 1 at the annual meeting of the Pediatric Academic Societies in Denver.

"This is the first time that anyone has presented data on the brain temperature of a human obtained non-invasively," said principal researcher Dr, Thomas Bass, a neonatologist at Children's Hospital of The King's Daughters in Norfolk, Va., and a professor of pediatrics at the hospital's academic partner, Eastern Virginia Medical School.

The research also suggests that an injured brain can be significantly warmer than the body, a finding critical to cooling therapies that reduce brain damage in everyone from elderly heart attack victims to hypoxic newborns.

"Knowing the actual brain temperature may allow us to improve outcomes by keeping the brain at an optimum temperature," said Dr. Bass.

With the help of a $750,000 National Institutes of Health grant, a research team led by Dr. Bass adapted an instrument that calculates temperatures by detecting microwave emissions produced by all human tissue.

Those microwaves pass unimpeded through the skull, like light passing through a sheet of glass. As tissue temperatures increase, the emissions grow more intense. Engineers calibrated the device to measure the temperature of brain tissue 1.5 centimeters beneath the skull.

In the trial whose results were presented, the device was placed on the heads of infants undergoing cooling therapy at CHKD. The device's brain temperature readings were correlated with rectal and esophageal temperatures. The difference in temperature between the brain and the body recorded by other means was as high as 5.4% Fahrenheit.

"That's difference is larger than we expected," Dr. Bass said.

Dr. Bass, who pioneered research on cooling therapy for hypoxic newborns, and set about this research because he believed the therapy could be improved if doctors knew precise temperature of the damaged organ, the brain.

Hypoxic brain damage in infants occurs most often in full-term births when the child suffers oxygen loss either immediately before or during delivery. Because of a quirk in the brain, a child can be revived but brain cells continue to die over several days, resulting in brain damage or death. Doctors could do little to stop this progression; parents often watched helplessly as their sons and daughters literally died before their eyes.

Based on the observation that children rescued from freezing ponds after extended periods of time suffered little or no brain damage, cooling therapy involves chilling an infant's body to 92 degrees for 72 hours after brain injury.

A clinical trial on the therapy showed that cooling the child stops or reduces the progression of brain cell death, drastically reducing brain damage and death. The results were so positive that the therapy is now standard in advanced neonatal intensive-care units worldwide.

Cooling therapy is now used with other patients as well, including heart attack victims whose brains have suffered oxygen deprivation.

Because cooling therapy's success relies on the temperature of the brain, precise readings of the brain's temperature is likely to improve a therapy that's already proven remarkably effective.

Children's Hospital of The King's Daughters is the only freestanding pediatric hospital in Virginia.

Greg Raver-Lampman | EurekAlert!
Further information:
http://www.chkd.org/

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>