Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop the first climate-based model to predict Dengue fever outbreaks

09.06.2009
Scientists use climate variables and vegetation indices to predict and mitigate Dengue epidemics in the American tropics

Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF) are the most important vector-borne viral diseases in the World. Around 50-100 million cases appear each year putting 2.5 billion people at risk of suffering this debilitating and sometimes fatal disease. Dengue Fever is prevalent in the Tropics.

For that reason, an interdisciplinary team of researchers from the University of Miami (UM) and the University of Costa Rica have used global climatological data and vegetation indices from Costa Rica, to predict Dengue outbreaks in the region.

The new model can predict Dengue Fever epidemics with 83% accuracy, up to 40 weeks in advance of an outbreak and provide information on the magnitude of future epidemics. The model can be expanded to include the broader region of Latin America and the Caribbean, where incidence and spread of the disease has increased dramatically over the past 25 years.

An early warning system to prevent and mitigate the spread of the disease can potentially be developed using this model, explained Douglas O. Fuller, associate professor and chair of the department of Geography and Regional Studies in the UM College of Arts and Sciences and principal investigator of this project.

"Such a tool will provide sufficient time for public health authorities to mobilize resources to step up vector control measures, alert at-risk populations to impending conditions and help health professionals plan for increased case loads," Fuller said.

Vector-born diseases, such DF and DHF, are ones in which the disease is transmitted from an infected individual to another by a biological agent. In the case of Dengue, one of four closely related Dengue viruses is transmitted to humans by the Aedes aegypti or more rarely the Aedes albopictus mosquito, sometimes with other animals serving as intermediary hosts. Most of the world's population infected by Dengue (also known as "breakbone fever") is located in tropical and subtropical areas of the globe, where the weather is dominated by rainfall.

This project looks at climate and vegetation variables that have an impact on the mosquito populations in the American Tropics, such as El Niño Southern Oscillations, sea-surface temperatures and seasonal vegetation dynamics that affect evaporation and humidity near the ground.

"We were surprised that sea-surface temperature variations in the Pacific related to El Niño can be linked to a debilitating disease," Fuller said. "Now we see more clearly that global climate oscillations such as El Niño are important drivers of disease as well"

The study contributes to the rapidly emerging field of climate and infectious disease, which addresses increasing concerns that global warming, will exacerbate certain diseases like Dengue Fever and allow the vectors to spread to more temperate areas. The findings of this study were published earlier this year in the Institute of Physics journal Environmental Research Letters.

The model predicted a major Dengue epidemic of 2005 and has also been tested on data from Trinidad and Singapore with extremely accurate results, Fuller said. Other factors that may contribute to the increased occurrence of Dengue

Fever in the Tropics are: global trade, population growth and uncontrolled or unplanned urbanization.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.www.miami.edu

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.miami.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>