Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop the first climate-based model to predict Dengue fever outbreaks

09.06.2009
Scientists use climate variables and vegetation indices to predict and mitigate Dengue epidemics in the American tropics

Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF) are the most important vector-borne viral diseases in the World. Around 50-100 million cases appear each year putting 2.5 billion people at risk of suffering this debilitating and sometimes fatal disease. Dengue Fever is prevalent in the Tropics.

For that reason, an interdisciplinary team of researchers from the University of Miami (UM) and the University of Costa Rica have used global climatological data and vegetation indices from Costa Rica, to predict Dengue outbreaks in the region.

The new model can predict Dengue Fever epidemics with 83% accuracy, up to 40 weeks in advance of an outbreak and provide information on the magnitude of future epidemics. The model can be expanded to include the broader region of Latin America and the Caribbean, where incidence and spread of the disease has increased dramatically over the past 25 years.

An early warning system to prevent and mitigate the spread of the disease can potentially be developed using this model, explained Douglas O. Fuller, associate professor and chair of the department of Geography and Regional Studies in the UM College of Arts and Sciences and principal investigator of this project.

"Such a tool will provide sufficient time for public health authorities to mobilize resources to step up vector control measures, alert at-risk populations to impending conditions and help health professionals plan for increased case loads," Fuller said.

Vector-born diseases, such DF and DHF, are ones in which the disease is transmitted from an infected individual to another by a biological agent. In the case of Dengue, one of four closely related Dengue viruses is transmitted to humans by the Aedes aegypti or more rarely the Aedes albopictus mosquito, sometimes with other animals serving as intermediary hosts. Most of the world's population infected by Dengue (also known as "breakbone fever") is located in tropical and subtropical areas of the globe, where the weather is dominated by rainfall.

This project looks at climate and vegetation variables that have an impact on the mosquito populations in the American Tropics, such as El Niño Southern Oscillations, sea-surface temperatures and seasonal vegetation dynamics that affect evaporation and humidity near the ground.

"We were surprised that sea-surface temperature variations in the Pacific related to El Niño can be linked to a debilitating disease," Fuller said. "Now we see more clearly that global climate oscillations such as El Niño are important drivers of disease as well"

The study contributes to the rapidly emerging field of climate and infectious disease, which addresses increasing concerns that global warming, will exacerbate certain diseases like Dengue Fever and allow the vectors to spread to more temperate areas. The findings of this study were published earlier this year in the Institute of Physics journal Environmental Research Letters.

The model predicted a major Dengue epidemic of 2005 and has also been tested on data from Trinidad and Singapore with extremely accurate results, Fuller said. Other factors that may contribute to the increased occurrence of Dengue

Fever in the Tropics are: global trade, population growth and uncontrolled or unplanned urbanization.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.www.miami.edu

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.miami.edu

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>