Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers develop the first climate-based model to predict Dengue fever outbreaks

Scientists use climate variables and vegetation indices to predict and mitigate Dengue epidemics in the American tropics

Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF) are the most important vector-borne viral diseases in the World. Around 50-100 million cases appear each year putting 2.5 billion people at risk of suffering this debilitating and sometimes fatal disease. Dengue Fever is prevalent in the Tropics.

For that reason, an interdisciplinary team of researchers from the University of Miami (UM) and the University of Costa Rica have used global climatological data and vegetation indices from Costa Rica, to predict Dengue outbreaks in the region.

The new model can predict Dengue Fever epidemics with 83% accuracy, up to 40 weeks in advance of an outbreak and provide information on the magnitude of future epidemics. The model can be expanded to include the broader region of Latin America and the Caribbean, where incidence and spread of the disease has increased dramatically over the past 25 years.

An early warning system to prevent and mitigate the spread of the disease can potentially be developed using this model, explained Douglas O. Fuller, associate professor and chair of the department of Geography and Regional Studies in the UM College of Arts and Sciences and principal investigator of this project.

"Such a tool will provide sufficient time for public health authorities to mobilize resources to step up vector control measures, alert at-risk populations to impending conditions and help health professionals plan for increased case loads," Fuller said.

Vector-born diseases, such DF and DHF, are ones in which the disease is transmitted from an infected individual to another by a biological agent. In the case of Dengue, one of four closely related Dengue viruses is transmitted to humans by the Aedes aegypti or more rarely the Aedes albopictus mosquito, sometimes with other animals serving as intermediary hosts. Most of the world's population infected by Dengue (also known as "breakbone fever") is located in tropical and subtropical areas of the globe, where the weather is dominated by rainfall.

This project looks at climate and vegetation variables that have an impact on the mosquito populations in the American Tropics, such as El Niño Southern Oscillations, sea-surface temperatures and seasonal vegetation dynamics that affect evaporation and humidity near the ground.

"We were surprised that sea-surface temperature variations in the Pacific related to El Niño can be linked to a debilitating disease," Fuller said. "Now we see more clearly that global climate oscillations such as El Niño are important drivers of disease as well"

The study contributes to the rapidly emerging field of climate and infectious disease, which addresses increasing concerns that global warming, will exacerbate certain diseases like Dengue Fever and allow the vectors to spread to more temperate areas. The findings of this study were published earlier this year in the Institute of Physics journal Environmental Research Letters.

The model predicted a major Dengue epidemic of 2005 and has also been tested on data from Trinidad and Singapore with extremely accurate results, Fuller said. Other factors that may contribute to the increased occurrence of Dengue

Fever in the Tropics are: global trade, population growth and uncontrolled or unplanned urbanization.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the

Marie Guma-Diaz | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>