Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Novel Cancer Detection Method

09.11.2009
A novel method of detection of cervical cancer cells has been developed by Clarkson University Professor Igor Sokolov’s group, an affiliate of the University’s Nanoengineering and Biotechnology Laboratories Center (NABLAB).

The group's paper, "Towards Nonspecific Detection of Malignant Cervical Cells with Fluorescent Silica Beads," is published in Small (Volume 5 Issue 20, Pages 2,277 - 2,284).

Methods for detection of cancer cells are mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell-growth analysis or genetic tests.

Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis, which is impractical for clinical use.

Sokolov and his team hope that the physical sciences can help to develop an alternative method in the detection of cancer cells, which will be more precise and simpler.

His group reports in Small on a method to detect cancer cells by using nonspecific (just physical) adhesion of silica beads to cells.

This finding is based on their recently published results in Nature Nanotechnology, where they reported on observation of unknown before difference in surface physical properties of cancerous and normal human epithelial cervical cells. Specifically, they found a substantial difference in the brush layer on the cell surface. This difference was the main motivation for their present work. The difference in the brush was expected to lead to the differences in the adhesion of various particles to such cells.

The adhesion was studied with the help of atomic force microscopy (AFM). Silica beads were attached to the AFM cantilever, and consequently, touched the cell surfaces. The force needed to separate the bead from the cell, the adhesion force, was measured.

The difference in adhesion, which has an essentially physical nature, was used to distinguish between cancerous and normal cells. High adhesion resulted in more particles adhered to cells. Utilizing fluorescent silica particle, one can easily measure the amount of fluorescent light coming from such cells.

The researchers used ultrabright fluorescent silica particles − the brightest particles ever synthesized -- also developed by Sokolov's team. Using cells collected from cervical cancers of three cancer patients and cells extracted from tissue of healthy patients, the researchers found an unambiguous difference.

This achievement can lead to earlier detection and treatment of cancer, which is important to decrease fatality of this disease considerably.

While this finding might advance to novel methods in diagnosis and treatment, including improved speed, convenience and accuracy, Sokolov says “The problem is in the variability of human subjects. The difference was found for six human subjects. This might be enough for a demonstration, but it is not sufficient to speak about a new clinical method. More statistics must be collected before we can speak about clinical applications.” As the team prepares a more detailed summary of results, he and Biology Professor Craig Woodworth are writing a proposal for further study to the National Institutes of Health.

The team consists of Sokolov, who has appointments in Physics, Chemistry and Biomolecular Science; Woodworth, a cervical cancer expert; Maxim Dokukin, a physics postdoctoral fellow; and Ravi M. Gaikwad and Nataliaa Guz, physics graduate students. The other members of Sokolov’s group, Eun-Bum Cho (physics postdoctoral fellow), and physics graduate students Dmytro Volkov and Shyuzhene Li, work on biosensors, self-assembly of particles, and the study of skin aging.

The research was done within the Nanoengineering and Biotechnology Laboratories Center (NABLAB) led by Sokolov, a unit established to promote cross-disciplinary collaborations within the University. It comprises more than a dozen faculty members to capitalize on the expertise of Clarkson scholars in the areas of cancer cell research, fine particles for bio and medical applications, synthesis of smart materials, advancement biosensors, etc.

Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

Michael P. Griffin | Newswise Science News
Further information:
http://www.clarkson.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>