Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Novel Cancer Detection Method

09.11.2009
A novel method of detection of cervical cancer cells has been developed by Clarkson University Professor Igor Sokolov’s group, an affiliate of the University’s Nanoengineering and Biotechnology Laboratories Center (NABLAB).

The group's paper, "Towards Nonspecific Detection of Malignant Cervical Cells with Fluorescent Silica Beads," is published in Small (Volume 5 Issue 20, Pages 2,277 - 2,284).

Methods for detection of cancer cells are mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell-growth analysis or genetic tests.

Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis, which is impractical for clinical use.

Sokolov and his team hope that the physical sciences can help to develop an alternative method in the detection of cancer cells, which will be more precise and simpler.

His group reports in Small on a method to detect cancer cells by using nonspecific (just physical) adhesion of silica beads to cells.

This finding is based on their recently published results in Nature Nanotechnology, where they reported on observation of unknown before difference in surface physical properties of cancerous and normal human epithelial cervical cells. Specifically, they found a substantial difference in the brush layer on the cell surface. This difference was the main motivation for their present work. The difference in the brush was expected to lead to the differences in the adhesion of various particles to such cells.

The adhesion was studied with the help of atomic force microscopy (AFM). Silica beads were attached to the AFM cantilever, and consequently, touched the cell surfaces. The force needed to separate the bead from the cell, the adhesion force, was measured.

The difference in adhesion, which has an essentially physical nature, was used to distinguish between cancerous and normal cells. High adhesion resulted in more particles adhered to cells. Utilizing fluorescent silica particle, one can easily measure the amount of fluorescent light coming from such cells.

The researchers used ultrabright fluorescent silica particles − the brightest particles ever synthesized -- also developed by Sokolov's team. Using cells collected from cervical cancers of three cancer patients and cells extracted from tissue of healthy patients, the researchers found an unambiguous difference.

This achievement can lead to earlier detection and treatment of cancer, which is important to decrease fatality of this disease considerably.

While this finding might advance to novel methods in diagnosis and treatment, including improved speed, convenience and accuracy, Sokolov says “The problem is in the variability of human subjects. The difference was found for six human subjects. This might be enough for a demonstration, but it is not sufficient to speak about a new clinical method. More statistics must be collected before we can speak about clinical applications.” As the team prepares a more detailed summary of results, he and Biology Professor Craig Woodworth are writing a proposal for further study to the National Institutes of Health.

The team consists of Sokolov, who has appointments in Physics, Chemistry and Biomolecular Science; Woodworth, a cervical cancer expert; Maxim Dokukin, a physics postdoctoral fellow; and Ravi M. Gaikwad and Nataliaa Guz, physics graduate students. The other members of Sokolov’s group, Eun-Bum Cho (physics postdoctoral fellow), and physics graduate students Dmytro Volkov and Shyuzhene Li, work on biosensors, self-assembly of particles, and the study of skin aging.

The research was done within the Nanoengineering and Biotechnology Laboratories Center (NABLAB) led by Sokolov, a unit established to promote cross-disciplinary collaborations within the University. It comprises more than a dozen faculty members to capitalize on the expertise of Clarkson scholars in the areas of cancer cell research, fine particles for bio and medical applications, synthesis of smart materials, advancement biosensors, etc.

Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

Michael P. Griffin | Newswise Science News
Further information:
http://www.clarkson.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>