Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new approach for studying deadly brain cancer

24.07.2013
Human glioblastoma multiforme, one of the most common, aggressive and deadly forms of brain cancer, is notoriously difficult to study. Scientists have traditionally studied cancer cells in petri dishes, which have none of the properties of the brain tissues in which these cancers grow, or in expensive animal models.

Now a team of engineers has developed a three-dimensional hydrogel that more closely mimics conditions in the brain. In a paper in the journal Biomaterials, the researchers describe the new material and their approach, which allows them to selectively tune up or down the malignancy of the cancer cells they study.

The new hydrogel is more versatile than other 3-D gels used for growing glioma (brain cancer) cells in part because it allows researchers to change individual parameters – the gel’s stiffness, for example, or the presence of molecular signals that can influence cancer growth – while minimally altering its other characteristics, such as porosity.

Being able to adjust these traits individually will help researchers tease out important features associated with the initial growth of a tumor as well as its response to clinical therapies, said University of Illinois chemical and biomolecular engineering professor Brendan Harley, who led the study with postdoctoral researcher Sara Pedron and undergraduate student Eftalda Becka. Harley is an affiliate of the Institute for Genomic Biology at Illinois.
The researchers found that they could increase or decrease the malignancy of glioma cells in their hydrogel simply by adding hyaluronic acid, a naturally occurring carbohydrate found in many tissues, especially the brain.

Hyaluronic acid (HA) is a key component of the extracellular matrix that provides structural and chemical support to cells throughout the body. HA contributes to cell proliferation and cell migration, and local changes in HA levels have been implicated in tumor growth.

“Hyaluronic acid is one of the major building blocks in the brain,” Harley said. “The structure of a newly forming brain tumor has some of this HA within it, but there’s also a lot of the HA in the brain surrounding the tumor.”
Previous studies have used hydrogels made out of nothing but hyaluronic acid to study gliomas, Harley said. “The problem there is that HA is structurally not very strong.” It also is difficult to adjust the amount of HA that the glioma cells are exposed to if their environment is 100 percent HA, he said.

In the new study, Pedron observed how glioma cells behaved in two different hydrogels – one based on methacrylated gelatin (GelMA) and the other using a more conventional polyethylene glycol (PEG) biomaterial. These two materials vary in one important trait: GelMA is a naturally derived material that contains adhesive sites that allow cells to latch onto it; synthetic PEG does not.

“The purpose of having these two systems was to isolate the effect of HA on glioma cells,” Pedron said. If changing HA levels produced different effects in different gels, that would indicate that the gels were contributing to those effects, she said.

Instead, Harley and Pedron found that additions of HA to glioma cells had “very similar” effects in both materials. Adding too little or too much HA led to reduced malignancy, while incorporating just enough HA led to significantly enhanced malignancy. This held true for multiple types of glioblastoma multiforme cells. This suggests that “it’s the HA itself that is likely the cause for this malignant change,” Harley said.

“If you have a material that allows you to selectively tune up or down malignancy, that will allow you to ask lots of questions about treatment methods for more malignant or less malignant forms of glioma. It also will allow scientists to try to get a response that’s closer to what you see in the body,” he said.

“If you talk to pathologists, they’ll say a biomaterial will never allow you to grow a full brain tumor, which is probably true,” Harley said. “But it’s realistic to think that a well-designed biomaterial will allow you to study aspects of glioma growth and treatment in a way that’s much richer than simply looking in a petri dish and much more accessible than trying to study tumor development within the brain itself.”

The U. of I. department of chemical and biomolecular engineering, the Institute for Genomic Biology and the Campus Research Board supported this research.
Editor’s notes: To reach Brendan Harley, call 217-244-7112; email bharley@illinois.edu. To reach Sara Pedron, email spedron@illinois.edu.

The paper, “Regulation of Glioma Cell Phenotype in 3D Matrices by Hyaluronic Acid,” is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>