Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a novel antibacterial orthodontic bracket cement

21.03.2014

Antibacterial orthodontic cement containing a quaternary ammonium monomer dimethylaminododecyl methacrylate

Today, at the 43rd Annual Meeting & Exhibition of the American Association for Dental Research (AADR), held in conjunction with the 38th Annual Meeting of the Canadian Association for Dental Research, Mary Anne Sampaio de Melo, from the University of Maryland, Baltimore, will present a research study titled "Antibacterial Orthodontic Cement Containing a Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate."

Demineralized lesions in enamel around orthodontic brackets are caused by acids from biofilm accumulation. The objectives of this study were to develop a novel antibacterial orthodontic bracket cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM), and to investigate the effects on dental plaque microcosm biofilm response and enamel bond strength.

DMADDM with an alkyl chain length of 12 was synthesized and incorporated into the cement at mass fractions of 0%, 1.5% and 3%. Orthodontic cement Transbond XT served as control. Shear bond strength of metal brackets to human enamel was measured.

... more about:
»AADR »Ammonium »Cement »Dental »acid »antibacterial »lactic »metabolic

Cement remnant index scores were determined after bracket failure. A plaque microcosm biofilm model with human saliva as inoculum was used to measure metabolic activity, lactic acid production, and colony-forming units (CFU) for biofilms on orthodontic cements.

Incorporating DMADDM into orthodontic cement did not affect the shear bond strength (13.1 to 14.6 MPa; p = 0.09). Dental plaque microcosm biofilm viability was substantially inhibited when in contact with cement disks containing DMADDM. The new orthodontic adhesive reduced biofilm metabolic activity by up to 66% and lactic acid by 78% (p < 0.05). Biofilm total micro-organisms were reduced by up to 88%, total streptococci by 96%, and mutans streptococci by 98% (p < 0.05).

Increasing DMADDM mass fraction increased the antibacterial potency. Orthodontic cement containing 3% DMADDM was the most strongly antibacterial. These results show that the DMADDM-containing orthodontic cement inhibited biofilms and lactic acid without compromising the enamel bond strength, and hence may be promising to reduce or eliminate demineralization in enamel around orthodontic brackets.

###

This is a summary of abstract #1327, "Antibacterial Orthodontic Cement Containing a Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate," to be presented by Mary Anne Sampaio de Melo, Saturday, March 22, 2014, from 8 a.m. – 9:30 a.m. at the Charlotte Convention Center, room 213BC.

About the American Association for Dental Research

The American Association for Dental Research (AADR), headquartered in Alexandria, Va., is a nonprofit organization with more than 3,600 members in the United States. Its mission is: (1) to advance research and increase knowledge for the improvement of oral health; (2) to support and represent the oral health research community; and (3) to facilitate the communication and application of research findings. AADR is the largest Division of the International Association for Dental Research (IADR). To learn more about the AADR, visit http://www.aadr.org

Ingrid L. Thomas | EurekAlert!

Further reports about: AADR Ammonium Cement Dental acid antibacterial lactic metabolic

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>