Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers determine why tendons break down with age

05.08.2014

Scientists at Queen Mary University of London (QMUL) have identified differences in the proteins present in young and old tendons, in new research that could guide the development of treatments to stop tissue breakdown from occurring.

Tendon structure in horses is similar to humans, and both face common injuries. The researchers used a horse model to undertake a thorough analysis of all the proteins and protein fragments present in healthy and injured tendons. 

Working with scientists at the University of Liverpool, the team collected data, which shows that healthy, older tendons have a greater amount of fragmented material within them, suggesting accumulated damage over time that has not been fully repaired. 

... more about:
»ability »ageing »damage »fragments »healthy »injury »proteins »repair »tendon

When examining injured tendons, the team found even more evidence of protein breakdown. However, whilst in younger tendons, the cells were active and trying to repair the damage, there was an accumulation of different protein fragments in older tendons. This suggests the cells somehow lose the ability to repair damage during the ageing process. 

“Normal function of tendons, such as the Achilles, is important not just for Commonwealth athletes but for everyday activities for ordinary people,” said co-author Dr Hazel Screen, a Reader in biomedical engineering at QMUL’s  School of Engineering and Materials Science and Institute of Bioengineering

She added: “This is the first study of its kind, and provides evidence that the increased risk of tendon injury with ageing might be due to a reduced ability of tendon cells to repair damage effectively.”   

This novel information is an important first step towards understanding how our tissues break down as we age and could help us find ways to prevent it occurring in the future. 

Proteomic analysis reveals age-related changes in tendon matrix composition, with age-and injury-specific matrix fragmentation’ is published in the Journal of Biological Chemistry.

 

For more information or to arrange interviews with the author, please contact:

Neha Okhandiar

Public Relations Manager - Science and Engineering

T: +44 (0)207 882 7927

E: n.okhandiar@qmul.ac.uk

Queen Mary University of London                         

Queen Mary University of London is the “biggest star” (Times Higher Education) among the UK's leading research-intensive higher education institutions, with five campuses in the capital: Mile End, Whitechapel, Charterhouse Square, West Smithfield and Lincoln’s Inn Fields. 

A member of the Russell Group, QMUL is also one of the largest of the colleges of the University of London, with 17,800 students - 20 per cent of whom are from more than 150 countries. 

Some 4,000 staff deliver world-class degrees and research across 21 departments, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.

Neha Okhandiar | Queen Mary University of London (QMUL)
Further information:
http://www.qmul.ac.uk

Further reports about: ability ageing damage fragments healthy injury proteins repair tendon

More articles from Health and Medicine:

nachricht 'Sugar-coated' microcapsule eliminates toxic punch of experimental anti-cancer drug
18.12.2014 | Johns Hopkins Medicine

nachricht Fine particulate air pollution linked with increased autism risk
18.12.2014 | Harvard School of Public Health

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Value chain driven development of rural areas in Eastern Europe

22.12.2014 | Event News

Smart Cities

08.12.2014 | Event News

European Polymer Congress 2015 in Dresden/Germany

01.12.2014 | Event News

 
Latest News

Coral Reveals Long-Term Link Between Pacific Winds, Global Climate

22.12.2014 | Earth Sciences

First Direct Evidence that a Mysterious Phase of Matter Competes with High-Temperature Superconductivity

22.12.2014 | Materials Sciences

Yellowstone's Thermal Springs -- Their Colors Unveiled

22.12.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>