Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers determine why tendons break down with age

05.08.2014

Scientists at Queen Mary University of London (QMUL) have identified differences in the proteins present in young and old tendons, in new research that could guide the development of treatments to stop tissue breakdown from occurring.

Tendon structure in horses is similar to humans, and both face common injuries. The researchers used a horse model to undertake a thorough analysis of all the proteins and protein fragments present in healthy and injured tendons. 

Working with scientists at the University of Liverpool, the team collected data, which shows that healthy, older tendons have a greater amount of fragmented material within them, suggesting accumulated damage over time that has not been fully repaired. 

When examining injured tendons, the team found even more evidence of protein breakdown. However, whilst in younger tendons, the cells were active and trying to repair the damage, there was an accumulation of different protein fragments in older tendons. This suggests the cells somehow lose the ability to repair damage during the ageing process. 

... more about:
»ability »ageing »damage »fragments »healthy »injury »proteins »repair »tendon

“Normal function of tendons, such as the Achilles, is important not just for Commonwealth athletes but for everyday activities for ordinary people,” said co-author Dr Hazel Screen, a Reader in biomedical engineering at QMUL’s  School of Engineering and Materials Science and Institute of Bioengineering

She added: “This is the first study of its kind, and provides evidence that the increased risk of tendon injury with ageing might be due to a reduced ability of tendon cells to repair damage effectively.”   

This novel information is an important first step towards understanding how our tissues break down as we age and could help us find ways to prevent it occurring in the future. 

Proteomic analysis reveals age-related changes in tendon matrix composition, with age-and injury-specific matrix fragmentation’ is published in the Journal of Biological Chemistry.

 

For more information or to arrange interviews with the author, please contact:

Neha Okhandiar

Public Relations Manager - Science and Engineering

T: +44 (0)207 882 7927

E: n.okhandiar@qmul.ac.uk

Queen Mary University of London                         

Queen Mary University of London is the “biggest star” (Times Higher Education) among the UK's leading research-intensive higher education institutions, with five campuses in the capital: Mile End, Whitechapel, Charterhouse Square, West Smithfield and Lincoln’s Inn Fields. 

A member of the Russell Group, QMUL is also one of the largest of the colleges of the University of London, with 17,800 students - 20 per cent of whom are from more than 150 countries. 

Some 4,000 staff deliver world-class degrees and research across 21 departments, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.

Neha Okhandiar | Queen Mary University of London (QMUL)
Further information:
http://www.qmul.ac.uk

Further reports about: ability ageing damage fragments healthy injury proteins repair tendon

More articles from Health and Medicine:

nachricht Scientists identify spark plug that ignites nerve cell demise in ALS
25.08.2016 | Harvard Medical School

nachricht Recommended blood pressure targets for diabetes are being challenged
24.08.2016 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>