Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers determine pathway for origin of most common form of brain and spinal cord tumor

14.06.2012
Johns Hopkins scientists hope discovery will drive drug treatments

Johns Hopkins researchers say they have discovered one of the most important cellular mechanisms driving the growth and progression of meningioma, the most common form of brain and spinal cord tumor. A report on the discovery, published in the journal Molecular Cancer Research, could lead the way to the discovery of better drugs to attack these crippling tumors, the scientists say.

"We are one step closer to identifying genes that can be targeted for treatment," says study leader Gilson S. Baia, Ph.D., a faculty research associate in the Department of Neurosurgery at the Johns Hopkins University School of Medicine.

Baia and his team based their study on the knowledge that in roughly two-thirds of cases of meningioma, patients have a mutation in the NF2 tumor suppressor gene, an alteration that disrupts the expression of the protein called Merlin. Merlin, in turn, kicks off a cell signaling pathway called Hippo, and in the new study, Baia and his colleagues determined that if Merlin is missing, the Hippo pathway is disrupted. In normal development, Hippo controls the size of tissues and organs in the body. It is activated when tissue needs to grow and also acts as a brake on uncontrolled growth. ‪If disrupted, a biochemical cascade produces uncontrolled tumor growth.

In meningioma cells, Baia studied the activation of a protein called YAP1, for Yes-associated protein 1, which is regulated by Hippo. Without it, YAP1 moves into the cell nuclei and activates genes whose products trigger tumorigenesis and cell proliferation.

In recent years, the Hippo pathway has been found to play a role in the growth of other types of cancers, but this is the first time the pathway has been implicated in meningioma, Baia says. YAP1 has also been implicated in other cancers, he says, including lung and ovarian malignancies, and the mutation in NF2 has been found in other, less common forms of brain cancers as well as in mesothelioma, a type of lung cancer mostly associated with exposure to asbestos.

In their research, the investigators collected 70 human meningioma tissue samples and found that YAP1 expression was present in the nuclei of all of the samples, regardless of tumor "grade," meaning it appears to be a molecular mechanism involved in the earliest stages of meningioma development. In the lab, Baia knocked down the amount of YAP1 in cell nuclei and found that tumor proliferation went down. When there was more YAP1, the cells grew and also migrated more.

Baia and his team also injected human cell lines in which YAP1 was overexpressed into the brains of the mice. "With excess YAP, all of the mice got tumors," Baia says.

The next step, Baia says, is to determine the exact genes activated by the arrival of YAP1 in the cell nuclei. Then, the hope is, new treatments can be developed to target those genes, he adds.

The research was supported by donations from Leonard and Phyllis Attman and the Meningioma Mommas Foundation.

Other Johns Hopkins researchers involved in the study include Otavia L. Caballero, M.D., Ph.D.; Brent A. Orr, M.D., Ph.D.; Janelle S. Y. Ho; and Gregory Riggins, M.D., Ph.D.

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>