Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe the pump that bacteria use to resist drugs

24.02.2011
A research team led by Edward Yu of Iowa State University and the Ames Laboratory has identified and described two parts of the three-part system that pumps toxins from bacteria and allows them to resist antibiotics.

The discoveries are published in the Feb. 24 issue of the journal Nature.

The paper describes the co-crystal structure of two parts of the three-part efflux pump that recognizes and removes heavy metal toxins from bacteria. A research team led by Yu – an Iowa State associate professor of physics and astronomy, of chemistry, of biochemistry, biophysics and molecular biology and an associate of the U.S. Department of Energy's Ames Laboratory – is working to discover the assembled structure of the entire three-part efflux pump.

Yu said a better understanding of how the three parts work together could help medical researchers find ways to restore the effectiveness of antibiotics.

"These pumps have to assemble together in order to pump out heavy metals and antibiotics," Yu said. "Researchers may be able to use these findings to design an inhibitor so the pump can't be assembled and can't work."

Yu and his research team described the first part of the pump – the inner membrane transporter known as CusA – in the Sept. 23, 2010, issue of the journal Nature.

The current paper describes the inner membrane transporter and how it interacts with the pump's middle adapter, known as CusB. The two parts together are known as the CusBA complex.

The research was supported by grants from the National Institutes of Health. In addition to Yu, the research team includes Robert Jernigan, an Iowa State professor of biochemistry, biophysics and molecular biology and director of Iowa State's Laurence H. Baker Center for Bioinformatics and Biological Statistics; Kanagalaghatta Rajashankar, the operations team leader for the Northeastern Collaborative Access Team facility at Argonne National Laboratory in Argonne, Ill., that's managed by Cornell University in Ithaca, N.Y.; Iowa State post-doctoral researchers Chih-Chia Su and Feng Long; and Iowa State graduate student Michael Zimmermann.

"Determining the structure of CusBA represents a remarkable achievement that has enabled Dr. Yu and his collaborators to model the structure of the entire CusCBA complex," said Jean Chin, who oversees structural biology grants at the National Institutes of Health. "This advance has brought novel insights on how the transporter functions and could lead to ways to block its activity and heighten bacteria's sensitivity to antibiotics."

To make their findings, the researchers purified and co-crystallized the proteins that make up the transporter and adaptor parts of the efflux pump from E. coli bacteria. Then they used X-ray crystallography, including a technique called molecular replacement with single-wavelength anomalous dispersion, to determine the structure and interaction of the two parts.

The studies revealed, molecule by molecule, how the inner transporter's three molecules bind and interact with the middle adaptor's six molecules. The studies also revealed the adaptors' six molecules form a funnel-like channel extending from the top of the transporter.

The researchers used those discoveries to predict how the three-molecule structure of the pump's third part, the outer membrane channel known as CusC, interacts with the CusBA complex.

Yu said discovering the structure of the toxin pump is a significant step toward a better understanding of bacterial resistance to antibiotics.

"A crystallographic model of this tripartite efflux complex has been unavailable," the researchers wrote in a summary of their latest Nature paper, "simply because co-crystallization of different components of the system has proven to be extremely difficult."

Edward Yu | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>