Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe a key mechanism in muscle regeneration

20.12.2012
The association alfa-enolasa/plasmina is a new selectively target for treating muscular pathologies

Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) have described a new selectively target in muscle regeneration. This is the association of alpha-enolase protein and plasmin. The finding could be used to develop new treatments to regenerate muscular injuries or dystrophies. The study was published in the PLOS ONE journal.

Skeletal muscle has a great capacity to regenerate after injury or genetic diseases such as Duchenne muscular dystrophy, the most common neuromuscular disorder in children. This condition is due to a defect in the gene of dystrophin, which absence causes instability of the membrane and leads to muscle degeneration of muscle fibres.

Regeneration involves restructuring the muscular tissue and it requires the participation of extracellular enzymes such as plasmin. The alpha-enolase, an enzyme found in the cytoplasm of cells, enables the activity of plasmin on the cell membrane giving the cell the ability to degrade the surrounding tissue.

In this study, IDIBELL researchers show that the association alpha-enolase and plasmin regulates two connected processes in the injured muscle or dystrophy: first, the attraction (recruitment) of immune cells to remove damaged tissue and, on the other hand, the formation of new muscle tissue from the stem cells. The researchers observed in the laboratory that these stem cells lost the ability to activate and merge to form skeletal muscle fibers when applied specific inhibitors of the alfa-enolasa/plasmina union.

The researchers also performed experiments in mice with Duchenne muscular injury. When they treated the animals with the same inhibitors, the mice showed a significant defect in muscle regeneration.

"These results demonstrate that the interaction of alpha-enolase and plasmin is necessary for the restoration of damaged muscle tissue", said Roser López-Alemany, IDIBELL researcher and study coordinator.

Recently, an extensive proteomic meta-analysis identified the alpha-enolase as the first differentially expressed protein in both human pathologies and mouse models, suggesting that “it may be considered a marker of a pathological stress in a large number of diseases", said Lopez-Alemany.

This study indicates that the association alfa-enolasa/plasmina is a novel selectively target for therapeutic interventions in muscle pathologies as "demonstrated that alpha-enolase is responsible for plasmin activity associated with muscle regeneration", concluded the IDIBELL researcher.

Díaz-Ramos À, Roig-Borrellas A, García-Melero A, Llorens A, López-Alemany R. Requirement of Plasminogen Binding to Its Cell-Surface Receptor α-Enolase for Efficient Regeneration of Normal and Dystrophic Skeletal Muscle. PLoS ONE 7(12): e50477.

Raül Toran | EurekAlert!
Further information:
http://www.idibell.cat

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>