Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe a key mechanism in muscle regeneration

20.12.2012
The association alfa-enolasa/plasmina is a new selectively target for treating muscular pathologies

Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) have described a new selectively target in muscle regeneration. This is the association of alpha-enolase protein and plasmin. The finding could be used to develop new treatments to regenerate muscular injuries or dystrophies. The study was published in the PLOS ONE journal.

Skeletal muscle has a great capacity to regenerate after injury or genetic diseases such as Duchenne muscular dystrophy, the most common neuromuscular disorder in children. This condition is due to a defect in the gene of dystrophin, which absence causes instability of the membrane and leads to muscle degeneration of muscle fibres.

Regeneration involves restructuring the muscular tissue and it requires the participation of extracellular enzymes such as plasmin. The alpha-enolase, an enzyme found in the cytoplasm of cells, enables the activity of plasmin on the cell membrane giving the cell the ability to degrade the surrounding tissue.

In this study, IDIBELL researchers show that the association alpha-enolase and plasmin regulates two connected processes in the injured muscle or dystrophy: first, the attraction (recruitment) of immune cells to remove damaged tissue and, on the other hand, the formation of new muscle tissue from the stem cells. The researchers observed in the laboratory that these stem cells lost the ability to activate and merge to form skeletal muscle fibers when applied specific inhibitors of the alfa-enolasa/plasmina union.

The researchers also performed experiments in mice with Duchenne muscular injury. When they treated the animals with the same inhibitors, the mice showed a significant defect in muscle regeneration.

"These results demonstrate that the interaction of alpha-enolase and plasmin is necessary for the restoration of damaged muscle tissue", said Roser López-Alemany, IDIBELL researcher and study coordinator.

Recently, an extensive proteomic meta-analysis identified the alpha-enolase as the first differentially expressed protein in both human pathologies and mouse models, suggesting that “it may be considered a marker of a pathological stress in a large number of diseases", said Lopez-Alemany.

This study indicates that the association alfa-enolasa/plasmina is a novel selectively target for therapeutic interventions in muscle pathologies as "demonstrated that alpha-enolase is responsible for plasmin activity associated with muscle regeneration", concluded the IDIBELL researcher.

Díaz-Ramos À, Roig-Borrellas A, García-Melero A, Llorens A, López-Alemany R. Requirement of Plasminogen Binding to Its Cell-Surface Receptor α-Enolase for Efficient Regeneration of Normal and Dystrophic Skeletal Muscle. PLoS ONE 7(12): e50477.

Raül Toran | EurekAlert!
Further information:
http://www.idibell.cat

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>