Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers decode a puzzling movement disorder

Neurodegenerative diseases represent one of the greatest challenges of our aging society.

However, investigation into these diseases is made particularly difficult due to the limited availability of human brain tissue. Scientists from the Life & Brain Research Center and Neurology Clinic of Bonn University have now taken a roundabout path: They reprogrammed skin cells from patients with a hereditary movement disorder into so-called induced pluripotent stem cells (iPS cells) and obtained functional nerve cells from them. They subsequently decoded how the disease arises. Their results have now been published in the specialist periodical ”Nature.”

The so-called Machado-Joseph disease is at the center of the current Bonn study. This is a disorder of movement coordination which was originally described in inhabitants of the Azores of Portuguese descent and which represents the most frequent dominantly inherited cerebellar ataxia in Germany today. The majority of patients develop gait abnormalities and a series of other neurological symptoms between the ages of 20 and 40. The cause of the disease is a recurring genetic sequence in the ataxin-3 gene which leads to agglutination of the corresponding protein and as a result, the nerve cells in the brain become damaged eventually. Until now, it was not clear why the disease only affects nerve cells and how the abnormal protein agglutination is triggered.

„Jack-of-all-trades“ from skin specimens of patients

In order to study the disease process on a molecular level, scientists working with the stem cell researcher Prof. Dr. Oliver Brüstle at the Institute for Reconstructive Neurobiology at Bonn University initially produced so-called induced pluripotent stem cells (iPS cells) from small skin specimens from patients. These induced pluripotent stem cells are cells which are returned to a very early, undifferentiated stage. These „jacks-of-all-trades“ – once obtained – can be multiplied to a nearly unlimited degree and they mature in all cells of the body. In the next step, the team working with Prof. Brüstle converted the iPS cells into brain stem cells from which the scientists were able to develop as many nerve cells needed for their investigations.

In particular: Since the nerve cells come from the patients themselves, they have the same genetic changes and can therefore serve as a cellular model of the disease. ”This method allows us to research the disease in the cells that are actually affected and which we otherwise could not access - almost as if we had placed the patient’s brain into the cell culture dish,“ says Dr. Philipp Koch, a long-time colleague of Prof. Brüstle and one of the lead authors of the study. Together with his colleague Dr. Peter Breuer from the Neurology Clinic and Polyclinic of the Bonn University Medical Center, Koch electrically stimulated the artificially created nerve cells. In doing so, the researchers were able to show that the formation of the protein aggregates is directly correlated with the electrical activity of the nerve cells. ”The enzyme calpain plays a key role in this; calpain is activated by the increased calcium content of stimulated nerve cells,“ says the biochemist Breuer. ”This newly identified mechanism explains why the disease only affects nerve cells,“ Prof. Brüstle points out.

Reprogrammed nerve cells as a study objective for drugs

”The study illustrates the potential that this special type of stem cells has for neurological disease research,“ says Prof. Dr. Thomas Klockgether, Clinical Director of the German Center for Neurodegenerative Diseases (DZNE) and Director of the Bonn University Clinic for Neurology, whose team closely collaborated in this study with the scientists working with Prof. Brüstle. For Prof. Brüstle, this is reason enough to contemplate new configurations: ”We need interdisciplinary departments in which scientists from stem cell biology and molecular disease research work together side by side.“ Prof. Dr. Dr. Pierluigi Nicotera, scientific chairman and chief executive of the DZNE, concurs: “The DZNE is very interested in cooperative arrangements. Because reprogrammed stem cells have enormous potential for understanding the pathology of neurodegenerative diseases.“

As a next step, Prof. Brüstle and his colleagues from Life & Brain want to use reprogrammed nerve cells for the development of active substances to treat neurological diseases.

Publication: Koch, P., Breuer, P., Peitz, M., Jungverdorben, J., Kesavan, J., Poppe, D., Doerr, J., Ladewig, J., Mertens, J., Tüting, T., Hoffmann, P., Klockgether, T., Evert, B.O., Wüllner, U., Brüstle, O. (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature doi:10.1038/nature10671

Contact information:

Prof. Dr. Oliver Brüstle
Institute for Reconstructive Neurobiology
Bonn University
Telephone: +49-228-6885-500

Johannes Seiler | idw
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>