Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers debunk myth about Parkinson's disease

16.09.2014

Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson's disease. The findings have recently been published in the prestigious Journal of Neuroscience.

The defining symptoms of Parkinson's disease are slow movements, muscular stiffness and shaking. There is currently no cure for the condition, so it is essential to conduct innovative research with the potential to shed some light on this terrible disruption to the central nervous system. Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson?s disease.

Dopamine is an important neurotransmitter which affects physical and psychological functions such as motor control, learning and memory. Levels of this substance are regulated by special dopamine cells. When the level of dopamine drops, nerve cells that constitute part of the brain's 'stop signal' are activated.

"This stop signal is rather like the safety lever on a motorised lawn mower: if you take your hand off the lever, the mower's motor stops. Similarly, dopamine must always be present in the system to block the stop signal. Parkinson's disease arises because for some reason the dopamine cells in the brain are lost, and it is known that the stop signal is being over-activated somehow or other. Many researchers have therefore considered it obvious that long-term lack of dopamine must be the cause of the distinctive symptoms that accompanies the disease. However, we can now use advanced computer simulations to challenge the existing paradigm and put forward a different theory about what actually takes place in the brain when the dopamine cells gradually die," explains Jakob Kisbye Dreyer, Postdoc at the Department of Neuroscience and Pharmacology, University of Copenhagen.

Read the article in Journal of Neuroscience

A thorn in the side

Scanning the brain of a patient suffering from Parkinson's disease reveals that in spite of dopamine cell death, there are no signs of a lack of dopamine – even at a comparatively late stage in the process.

"The inability to establish a lack of dopamine until advanced cases of Parkinson's disease has been a thorn in the side of researchers for many years. On the one hand, the symptoms indicate that the stop signal is over-activated, and patients are treated accordingly with a fair degree of success. On the other hand, data prove that they are not lacking dopamine," says Postdoc Jakob Kisbye Dreyer.

Computer models predict the progress of the disease

"Our calculations indicate that cell death only affects the level of dopamine very late in the process, but that symptoms can arise long before the level of the neurotransmitter starts to decline. The reason for this is that the fluctuations that normally make up a signal become weaker. In the computer model, the brain compensates for the shortage of signals by creating additional dopamine receptors. This has a positive effect initially, but as cell death progresses further, the correct signal may almost disappear. At this stage, the compensation becomes so overwhelming that even small variations in the level of dopamine trigger the stop signal – which can therefore cause the patient to develop the disease."

The new research findings may pave the way for earlier diagnosis of Parkinson's disease.

###

Contact:

Jakob Kisbye Dreyer
Mobile: +45 29 61 19 78

Jakob Kisbye Dreyer | Eurek Alert!
Further information:
http://healthsciences.ku.dk/

Further reports about: Faculty Health Medical Neuroscience Parkinson's Scanning death dopamine processes special symptoms

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>