Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at IRB discover a key regulator of colon cancer

27.03.2014

 A team headed by Angel R. Nebreda at the Institute for Research in Biomedicine (IRB) identifies a dual role of the p38 protein in colon cancer.

The study demonstrates that, on the one hand, p38 is important for the optimal maintenance of the epithelial barrier that protects the intestine against toxic agents, thus contributing to decreased tumour development.


This is a picture of a colon tumor with presence of inflammatory cells (dark marks).

Credit: (Author: J Gupta, IRB)

Intriguingly, on the other hand, once a tumour has formed, p38 is required for the survival and proliferation of colon cancer cells, thus favouring tumour growth. The study is published today in Cancer Cell, a journal with one of the highest impact factors in cancer research.

p38 enhances the survival of colon cancer cells

The protein p38 is a member of the MAPK family—molecules that transmit signals from outside the cell inside, thus allowing an appropriate and dynamic cell response.

This protein is expressed in all cells of the body and it performs highly diverse functions depending on the context and tissue involved. Nebreda's group at IRB focuses on the function of p38 in cancer. Their work describes the essential role of p38 in tumour progression for the first time in vivo.

Furthermore, the scientists demonstrate that the treatment of mice with a p38 inhibitor previously used in clinical assays causes a considerable reduction in tumour size. The study provides useful information for clinicians and pharmaceutical companies about the role of p38 in the context of colon cancer. Colorectal cancer is now the second leading cause of cancer-related death in the world.

"p38 inhibitors may have clinical applications, but probably—and this forms part of the medicine of the future—these will be in combination with other drugs. We are trying to find out what p38 inhibitors should be combined with to make the tumour, which is now smaller, finally disappear," explains the Spanish scientist Nebreda, head of the Signalling and Cell Cycle Lab at IRB, BBVA Foundation Cancer Research Professor and ICREA research professor.

p38 suppresses pre-tumoral stages characterized by colon inflammation

The role of p38 in cancer is not clear cut. In this same study, Indian-born Jalaj Gupta who recently obtained his PhD in Nebreda's lab and is first author of the work, demonstrates that this same protein in a pre-tumoral context, favoured by inflammation of the colon—also known as colitis—impedes tumour development. It is well-known that patients with chronic inflammation of the intestine, such as that caused by Crohn's disease, have a greater incidence of colon tumours that the healthy population. In order to study the relationship between inflammation and cancer, Nebreda's team use mouse models that reproduce this inflammatory context. "Given that p38 regulates inflammation and also functions as a tumour suppressor in some mouse models, our study addressed how these two functions are integrated during the colon tumorigenesis associated with inflammation", says Gupta.

An important finding of the present study is related to the contribution of p38 to the maintenance of an intact epithelial barrier, a structure that protects the intestine from toxic agents and pathogens. Mice genetically depleted of p38 in the epithelial cells that form the intestinal barrier were subjected to a cancer-inducing protocol that causes mutations and inflammation. These animals developed twice as many tumours as a group of p38-expressing mice subjected to the same protocol. The tumour-suppressing capacity of p38 has also been described in cancer of the liver and lung. "Our study highlights the complexity of p38 functions, both in cancer and in the normal maintenance of tissues, and shows why an inhibitor of this molecule could effectively have undesirable side effects. This is why it is necessary to study in depth the patients and contexts in which treatment with such inhibitors would be suitable," explains Gupta.

"All drugs currently used to treat cancer have side effects," states Nebreda, "and in this regard p38 inhibitors would be no exception. However, the administration of such inhibitors to colon cancer patients may be a useful strategy to shrink the tumour in a few days before its surgical removal". Nebreda goes on to explain that the basic research performed in his lab seeks to understand better the biology of tumour cells, the roles of the molecules involved and the mechanisms that allow tumour progression. "We try to take this basic information a step further so that it becomes clinically useful when designing new treatments," says the researcher, who joined IRB, in Barcelona, in 2010, after working in USA, UK, Germany and the CNIO in Madrid.

In collaboration with a team led by Manuel Hidalgo at the CNIO, Nebreda's group is now studying mice implanted with tumours taken from patients. The preliminary results confirm the relevance of p38 for the growth of human tumours. The researchers also have experiments underway to study the involvement of p38 in the progression of breast and lung tumours.

###

Published today in the online advanced edition of Cancer Cell and involving the participation of Vassilis Gorgoulis' group at the University of Athens, the study was started six years ago as part of the European project InflaCare, which addressed the relationship between inflammation and cancer. The study has been completed with funding from the Spanish Ministry of Economy and Competitiveness, and from an ERC Advanced Grant project awarded to Nebreda in 2012 by the European Research Council. Forthcoming research will be performed as part of the latter, which will be completed in 2017. The competitiveness of Nebreda's group at IRB is strengthened by structural funding given to the lab by the BBVA Foundation since 2011, when Nebreda was appointed a BBVA Foundation Cancer Research Professor.

Reference article:

Dual function of p38alpha MAPK in colon cancer: suppression of colitis-associated tumor initiation but requirement for cancer cell survival
Jalaj Gupta, Ivan del Barco Barrantes, Ana Igea, Stratigoula Sakellariou, Ioannis S. Pateras, Vassilis G. Gorgoulis and Angel R. Nebreda
Cancer Cell (2014) http://dx.doi.org/10.1016/j.ccr.2014.02.019

More information:

Sònia Armengou
IRB Press Officer
+ 34 93 403 72 55/ +34 618 294 070
armengou@irbbarcelona.org

ABOUT THE INSTITUTE FOR RESEARCH IN BIOMEDICINE (IRB BARCELONA)

Founded in 2005 by the Government of Catalonia and the University of Barcelona, the Institute for Research in Biomedicine (IRB) is one of eight centres in Spain to be first recognised by the Ministry of Economy and Competitiveness as a "Severo Ochoa Centre of Excellence". The 23 groups hosted by the institute are devoted to basic and applied research at the interface between molecular and cellular biology, structural and computational biology, and chemistry, with experts in proteomics, genomics, biostatistics, and advanced digital microscopy. The research at IRB Barcelona is organised into five programmes, which work together with the common goal of conducting multidisciplinary projects that address important biomedical problems affecting our society, with special emphasis on cancer and metastasis. The institute is home to approximately 440 employees from 38 countries. IRB Barcelona's ultimate objective is to translate research results to the clinic and has already established three biotechnology spin-off companies to this end. The institute is located in the Barcelona Science Park (PCB), in the Diagonal Campus of the University of Barcelona. Director: Dr. Joan J. Guinovart. http://www.irbbarcelona.org /@IRBBarcelona / http://www.facebook.com/irbbarcelona

Sònia Armengou | EurekAlert!

Further reports about: BBVA Cancer Cell Foundation IRB colon discover inflammation intestine p38 tumour tumours

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>