Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers a Step Closer to Controlling Inflammation in MS

05.10.2012
A University of Adelaide researcher has published results that suggest a possible new mechanism to control multiple sclerosis (MS).

Dr Iain Comerford from the University's School of Molecular and Biomedical Science earned a three-year fellowship from MS Research Australia to work on this project. It is directed towards understanding how specific enzymes in cells of the immune system regulate immune cell activation and migration.

Along with his colleagues, Professor Shaun McColl and PhD students Wendel Litchfield and Ervin Kara, he focused on a molecule known as PI3Kgamma, which is involved in the activation and movement of white blood cells.

"There's already been worldwide interest in PI3Kgamma in relation to other human inflammatory disorders, such as diabetes and rheumatoid arthritis, and our study links this molecule and MS," said Dr Comerford, who is a Multiple Sclerosis Research Australia Fellow at the University of Adelaide.

Dr Comerford and his colleagues have now shown that this molecule is crucial for the development of experimental autoimmune encephalitis (EAE) in an animal model developed as a standard laboratory system for studying MS.

The team showed that a genetic alteration, which knocked out that particular molecule, resulted in a high resistance to the development of EAE and therefore protected against the nervous system damage typical of multiple sclerosis.

When the molecule is present, severe damage to the insulating myelin in the central nervous system was evident, resulting in inflammation in the spinal cord and myelin loss.

Following up on this result, the team then used an orally active drug that blocks the activity of the molecule PI3Kgamma at the first signs of disease onset. The drug even suppressed the development of EAE and reversed clinical signs of the disease.

"Our results so far have been very promising," Dr Comerford said.

"We've shown that by blocking PI3Kgamma, we can reduce the activation of self-reactive immune cells, reduce the release of inflammation-inducing molecules from immune cells, and also result in a dramatic reduction in the movement of immune cells into the central nervous system.

"Our hope is that future therapies for MS might target this molecule, which could very specifically dampen the damaging inflammation in the central nervous system.

"It will now be crucial to determine whether targeting these molecules could be a safe and effective way to treat MS in humans," Dr Comerford said.

Mr Jeremy Wright, CEO of MS Research Australia, said: "It is very rewarding to see that MSRA has been able to support these exciting developments by a young up-and-coming researcher. We will await his further results with great interest."

The research results were published recently in the online journal PLOS ONE.

Media Contact:

Dr Iain Comerford
Multiple Sclerosis Research Australia Fellow
School of Molecular & Biomedical Science
The University of Adelaide
Phone: +61 8 8313 1127
iain.comerford@adelaide.edu.au

Dr Iain Comerford | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>