Researcher links diabetic complication, nerve damage in bone marrow

The key to better treating retinopathy – damage to blood vessels in the retina that affects up to 80 percent of diabetic patients – lies not in the retina but in damage to the nerves found in bone marrow that leads to the abnormal release of stem cells, said Julia Busik, an associate professor in MSU's Department of Physiology.

“With retinopathy, blood vessels grow abnormally in the retina, distort vision and eventually can cause blindness,” said Busik, whose research appears in a recent issue of the Journal of Experimental Medicine. “There has been a lot of progress in treating the complication, but most treatments use a laser that is painful to the patient and destroys parts of the retina.”

Busik and her team found that nerve damage in diabetic bone marrow – where stem cells known as endothelial progenitor cells reside – affects the daily release of those EPCs into the bloodstream. Normally EPCs would exit the bone marrow and repair damage done in the vascular system during sleep.

Using animal models, the research team observed that the pattern of EPC release is faulty in diabetic bone marrow, creating abnormally low levels of EPCs during sleep, when they are needed most. That decrease in EPC release from a diabetic patient's bone marrow preceded the development of retinopathy.

“When the bone marrow suffers nerve damage in diabetic patients, it no longer provides a signal for the timely release of these reparative stem cells,” Busik said.

This novel finding shows that bone marrow nerve damage represents a new therapeutic target for treatment of all diabetic vascular complications, such as retinopathy.

“This opens up new avenues to better treatments outside of the retina that focus on stem cells and the causes of the nerve damage in bone marrow,” said Busik, whose collaborators included other researchers from MSU and the University of Florida. “We know what happens in the retina and have treatments that are very invasive; we now can look at a host of other options.”

Those options include looking at ways to prevent the original nerve damage in the bone marrow and potentially repairing or replacing the damaged endothelial progenitor cells.

Busik's work was funded by the National Institutes of Health, the Juvenile Diabetes Research Foundation and the Michigan Agricultural Experiment Station.

Future work needs to be done to explain why the nerve damage in bone marrow occurs in diabetic patients to begin with, she said.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Media Contact

Jason Cody EurekAlert!

More Information:

http://www.msu.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors