Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher links diabetic complication, nerve damage in bone marrow

07.01.2010
A research team led by a Michigan State University professor has discovered a link between diabetes and bone marrow nerve damage that may help treat one of the disease's most common and potentially blindness-causing complications.

The key to better treating retinopathy - damage to blood vessels in the retina that affects up to 80 percent of diabetic patients - lies not in the retina but in damage to the nerves found in bone marrow that leads to the abnormal release of stem cells, said Julia Busik, an associate professor in MSU's Department of Physiology.

"With retinopathy, blood vessels grow abnormally in the retina, distort vision and eventually can cause blindness," said Busik, whose research appears in a recent issue of the Journal of Experimental Medicine. "There has been a lot of progress in treating the complication, but most treatments use a laser that is painful to the patient and destroys parts of the retina."

Busik and her team found that nerve damage in diabetic bone marrow - where stem cells known as endothelial progenitor cells reside - affects the daily release of those EPCs into the bloodstream. Normally EPCs would exit the bone marrow and repair damage done in the vascular system during sleep.

Using animal models, the research team observed that the pattern of EPC release is faulty in diabetic bone marrow, creating abnormally low levels of EPCs during sleep, when they are needed most. That decrease in EPC release from a diabetic patient's bone marrow preceded the development of retinopathy.

"When the bone marrow suffers nerve damage in diabetic patients, it no longer provides a signal for the timely release of these reparative stem cells," Busik said.

This novel finding shows that bone marrow nerve damage represents a new therapeutic target for treatment of all diabetic vascular complications, such as retinopathy.

"This opens up new avenues to better treatments outside of the retina that focus on stem cells and the causes of the nerve damage in bone marrow," said Busik, whose collaborators included other researchers from MSU and the University of Florida. "We know what happens in the retina and have treatments that are very invasive; we now can look at a host of other options."

Those options include looking at ways to prevent the original nerve damage in the bone marrow and potentially repairing or replacing the damaged endothelial progenitor cells.

Busik's work was funded by the National Institutes of Health, the Juvenile Diabetes Research Foundation and the Michigan Agricultural Experiment Station.

Future work needs to be done to explain why the nerve damage in bone marrow occurs in diabetic patients to begin with, she said.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>