Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher finds revolutionary way to treat eye cancer

30.08.2010
Treatment may prevent blindness

Rare but devastating, eye cancer can strike anyone at any time and treating it often requires radiation that leaves half of all patients partially blind.

But a new technique developed by Scott Oliver, MD, assistant professor at the University of Colorado School of Medicine, may change all that.

Oliver has discovered that silicone oil applied inside the eye can block up to 55 percent of harmful radiation, enough to prevent blindness in most patients.

His findings, published in the July issue of the Archives of Ophthalmology, may revolutionize the way eye cancer is treated.

"If you get diagnosed with eye cancer you want to know, `Is this going to kill me? Is this going to make me go blind?''' said Oliver, director of the Ophthalmic Oncology Center at the Rocky Mountain Lions Eye Institute on the University of Colorado's Anschutz Medical Campus. "I believe this treatment will allow you to keep your eye and keep your vision."

Oliver focused on choroidal melanoma of the eye or uveal cancer, the most common and dangerous form of a disease that strikes over 2,000 people each year. It can spread quickly to the liver and lungs which is often fatal. The cancer can occur in people of any age - fair skin and sun exposure are thought to be a leading cause.

Physicians often treat it with a technique called plaque brachytherapy. Surgeons attach a gold cap containing radioactive seeds to the white part of the eye. For one week the radiation slowly incinerates the tumor but it also causes long-term damage.

"Radiation injures blood vessels and nerves in the back of the eye," Oliver said. "Half of all patients are legally blind in three years in the treated eye."

In his quest to save their eyesight, Oliver experimented with a series of substances that would block radiation from striking critical structures while allowing it to hit the tumor. He discovered that silicone oil, already used to treat retinal detachment, could screen out a majority of harmful radiation.

"You don't have to block out all the radiation to protect the eye because the vital structures in the eye can tolerate low doses of radiation," he said.

Oliver experimented on cadaver eyes and tested the oil on animals in the laboratory and found no harmful side-effects.

"We are now at the point where we can embark on a clinical trial," he said. "This is a significant development in the way we treat this disease. In the past, we could save the eye with radiation but we saved vision only half the time. With this treatment, I believe we will do much better in the future."

Faculty at the University of Colorado Denver's School of Medicine work to advance science and improve care. These faculty members include physicians, educators and scientists at University of Colorado Hospital, The Children's Hospital, Denver Health, National Jewish Health, and the Denver Veterans Affairs Medical Center. Degrees offered by the UC Denver School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is located on the University of Colorado's Anschutz Medical Campus, one of four campuses in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

David Kelly | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>