Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher finds revolutionary way to treat eye cancer

30.08.2010
Treatment may prevent blindness

Rare but devastating, eye cancer can strike anyone at any time and treating it often requires radiation that leaves half of all patients partially blind.

But a new technique developed by Scott Oliver, MD, assistant professor at the University of Colorado School of Medicine, may change all that.

Oliver has discovered that silicone oil applied inside the eye can block up to 55 percent of harmful radiation, enough to prevent blindness in most patients.

His findings, published in the July issue of the Archives of Ophthalmology, may revolutionize the way eye cancer is treated.

"If you get diagnosed with eye cancer you want to know, `Is this going to kill me? Is this going to make me go blind?''' said Oliver, director of the Ophthalmic Oncology Center at the Rocky Mountain Lions Eye Institute on the University of Colorado's Anschutz Medical Campus. "I believe this treatment will allow you to keep your eye and keep your vision."

Oliver focused on choroidal melanoma of the eye or uveal cancer, the most common and dangerous form of a disease that strikes over 2,000 people each year. It can spread quickly to the liver and lungs which is often fatal. The cancer can occur in people of any age - fair skin and sun exposure are thought to be a leading cause.

Physicians often treat it with a technique called plaque brachytherapy. Surgeons attach a gold cap containing radioactive seeds to the white part of the eye. For one week the radiation slowly incinerates the tumor but it also causes long-term damage.

"Radiation injures blood vessels and nerves in the back of the eye," Oliver said. "Half of all patients are legally blind in three years in the treated eye."

In his quest to save their eyesight, Oliver experimented with a series of substances that would block radiation from striking critical structures while allowing it to hit the tumor. He discovered that silicone oil, already used to treat retinal detachment, could screen out a majority of harmful radiation.

"You don't have to block out all the radiation to protect the eye because the vital structures in the eye can tolerate low doses of radiation," he said.

Oliver experimented on cadaver eyes and tested the oil on animals in the laboratory and found no harmful side-effects.

"We are now at the point where we can embark on a clinical trial," he said. "This is a significant development in the way we treat this disease. In the past, we could save the eye with radiation but we saved vision only half the time. With this treatment, I believe we will do much better in the future."

Faculty at the University of Colorado Denver's School of Medicine work to advance science and improve care. These faculty members include physicians, educators and scientists at University of Colorado Hospital, The Children's Hospital, Denver Health, National Jewish Health, and the Denver Veterans Affairs Medical Center. Degrees offered by the UC Denver School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is located on the University of Colorado's Anschutz Medical Campus, one of four campuses in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

David Kelly | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>