Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research yields insights into Parkinson's disease

05.06.2012
Researchers at the University of Toronto Scarborough (UTSC) used an innovative technique to examine chemical interactions that are implicated in Parkinson's Disease.

The work details how a protein called alpha-synuclein interacting with the brain chemical dopamine can lead to protein misfolding and neuronal death.

Parkinson's Disease is a neurodegenerative disease which results in loss of motor control and cognitive function. Although the cause isn't known precisely, the disease involves the death of brain cells that produce dopamine, a chemical important in neuronal signaling. The disease also involves a protein called alpha-synuclein which aggregates in the neurons of people with the disease.

Kagan Kerman, a chemist in the Department of Physical and Environmental Sciences, and Ian R. Brown, a neuroscientist who founded UTSC's Centre for the Neurobiology of Stress in the Department of Biological Sciences, looked at the way dopamine interacts with alpha-synuclein to form aggregates that may be toxic to neurons.

"This is very fundamental," says Kagan Kerman. "It gives us a new point of view of the misfolding proteins and how they are affected by dopamine."

These sorts of interactions are often studied using microscopy. But the UTSC researchers decided to use an electroanalytic technique called voltammetry. By studying tiny changes in electric current as dopamine and alpha-synuclein interacted they were able to determine details about the early phases of the interaction.

Using the technique, they were able to detail how changes in pH levels and ionic strength of the solution affected the interaction. They found that at higher pH levels and higher ionic strengths, dopamine interacted much more strongly with alpha-synuclein, forming aggregates more quickly.

The results could have implications for understanding and treating the disease. Normally dopamine is contained in structures called vesicles, in which pH levels are low and dopamine is unlikely to interact with alpha-synuclein. Outside of the vesicles dopamine encounters higher pH levels and, according to the new research, is much more likely to interact to create aggregates.

The analysis was done using chemicals deposited onto screen-printed electrodes only 12.5 mm by 4 mm. The electrodes were manufactured at Osaka University, where Kerman completed his PhD work. Because they are so small, the electrodes allowed analysis to be done on tiny samples.

The technique is a potentially quicker and cheaper way to study protein misfolding, and could be automated to screen drugs that might treat the disease, says Brown.

The research was published in Chemical Neuroscience, published by the American Chemical Society.

Kagan Kerman | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>