Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research yields insights into Parkinson's disease

05.06.2012
Researchers at the University of Toronto Scarborough (UTSC) used an innovative technique to examine chemical interactions that are implicated in Parkinson's Disease.

The work details how a protein called alpha-synuclein interacting with the brain chemical dopamine can lead to protein misfolding and neuronal death.

Parkinson's Disease is a neurodegenerative disease which results in loss of motor control and cognitive function. Although the cause isn't known precisely, the disease involves the death of brain cells that produce dopamine, a chemical important in neuronal signaling. The disease also involves a protein called alpha-synuclein which aggregates in the neurons of people with the disease.

Kagan Kerman, a chemist in the Department of Physical and Environmental Sciences, and Ian R. Brown, a neuroscientist who founded UTSC's Centre for the Neurobiology of Stress in the Department of Biological Sciences, looked at the way dopamine interacts with alpha-synuclein to form aggregates that may be toxic to neurons.

"This is very fundamental," says Kagan Kerman. "It gives us a new point of view of the misfolding proteins and how they are affected by dopamine."

These sorts of interactions are often studied using microscopy. But the UTSC researchers decided to use an electroanalytic technique called voltammetry. By studying tiny changes in electric current as dopamine and alpha-synuclein interacted they were able to determine details about the early phases of the interaction.

Using the technique, they were able to detail how changes in pH levels and ionic strength of the solution affected the interaction. They found that at higher pH levels and higher ionic strengths, dopamine interacted much more strongly with alpha-synuclein, forming aggregates more quickly.

The results could have implications for understanding and treating the disease. Normally dopamine is contained in structures called vesicles, in which pH levels are low and dopamine is unlikely to interact with alpha-synuclein. Outside of the vesicles dopamine encounters higher pH levels and, according to the new research, is much more likely to interact to create aggregates.

The analysis was done using chemicals deposited onto screen-printed electrodes only 12.5 mm by 4 mm. The electrodes were manufactured at Osaka University, where Kerman completed his PhD work. Because they are so small, the electrodes allowed analysis to be done on tiny samples.

The technique is a potentially quicker and cheaper way to study protein misfolding, and could be automated to screen drugs that might treat the disease, says Brown.

The research was published in Chemical Neuroscience, published by the American Chemical Society.

Kagan Kerman | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>