Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research yields insights into Parkinson's disease

Researchers at the University of Toronto Scarborough (UTSC) used an innovative technique to examine chemical interactions that are implicated in Parkinson's Disease.

The work details how a protein called alpha-synuclein interacting with the brain chemical dopamine can lead to protein misfolding and neuronal death.

Parkinson's Disease is a neurodegenerative disease which results in loss of motor control and cognitive function. Although the cause isn't known precisely, the disease involves the death of brain cells that produce dopamine, a chemical important in neuronal signaling. The disease also involves a protein called alpha-synuclein which aggregates in the neurons of people with the disease.

Kagan Kerman, a chemist in the Department of Physical and Environmental Sciences, and Ian R. Brown, a neuroscientist who founded UTSC's Centre for the Neurobiology of Stress in the Department of Biological Sciences, looked at the way dopamine interacts with alpha-synuclein to form aggregates that may be toxic to neurons.

"This is very fundamental," says Kagan Kerman. "It gives us a new point of view of the misfolding proteins and how they are affected by dopamine."

These sorts of interactions are often studied using microscopy. But the UTSC researchers decided to use an electroanalytic technique called voltammetry. By studying tiny changes in electric current as dopamine and alpha-synuclein interacted they were able to determine details about the early phases of the interaction.

Using the technique, they were able to detail how changes in pH levels and ionic strength of the solution affected the interaction. They found that at higher pH levels and higher ionic strengths, dopamine interacted much more strongly with alpha-synuclein, forming aggregates more quickly.

The results could have implications for understanding and treating the disease. Normally dopamine is contained in structures called vesicles, in which pH levels are low and dopamine is unlikely to interact with alpha-synuclein. Outside of the vesicles dopamine encounters higher pH levels and, according to the new research, is much more likely to interact to create aggregates.

The analysis was done using chemicals deposited onto screen-printed electrodes only 12.5 mm by 4 mm. The electrodes were manufactured at Osaka University, where Kerman completed his PhD work. Because they are so small, the electrodes allowed analysis to be done on tiny samples.

The technique is a potentially quicker and cheaper way to study protein misfolding, and could be automated to screen drugs that might treat the disease, says Brown.

The research was published in Chemical Neuroscience, published by the American Chemical Society.

Kagan Kerman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>