Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research with Underwater Treadmill is Breakthrough for Victims of Spinal-Cord Injuries

15.01.2010
It is a common assumption that it takes years to realize any measurable benefits from scientific research. It’s a marvel, therefore, to see an almost immediate payoff without wading through complicated tomes or deciphering squiggly creatures through microscopes. The payoff is a dramatic upturn in a person’s quality of life.

Following a plane crash, Jim Harris didn’t walk for two years. Today, with effort, he is walking. After a terrible fall, Bob Moody could only be on his feet for a couple of minutes. Now he’s taking 20-minute walks. As the result of a horrible automobile accident, Janette Rodgers was told she’d never walk again. In fact, she was nearly taken off life-support. Now she’s walking and improving her speed.

These recoveries and subsequent improvements have been possible, in no small part, because Sandra Stevens, a physical therapist, put these people through their paces on an underwater treadmill inside a fiberglass tank that holds 270 gallons of water—all part of her doctoral research at Middle Tennessee State University. Her research subjects were people who had suffered severe spinal-cord trauma.

Previously, graduate students in MTSU’s exercise science program utilized the underwater treadmill to help children with cerebral palsy increase muscle strength and improve mobility. The results were encouraging.

“It’s relatively new technology,” commented Dr. Don Morgan, MTSU health and human performance professor, who initially brought the treadmill to the Murfreesboro campus several years ago. “It’s been used by athletic teams and for older folks with arthritis. But it had never been used with children with CP.

Although water therapy had been used with physically challenged children in swimming pools, you can’t control the water height in pools. And with a treadmill you can control the speed.” Morgan and his students began their initial work with the treadmill thanks to funding from the National Institutes of Health.

“After watching the kids with cerebral palsy, I thought there were a lot of other populations that could benefit from this kind of therapy,” Stevens said.

Stevens worked with Rodgers, Harris, Moody and others for eight weeks during the fall semester, with each participant meeting two or three times a week.

“I looked at leg strength, balance, daily walking behavior, walking speed and endurance,” Stevens said. “Some of these folks could only walk for a minute then they would have to sit. When they started walking in the tank, the minimum time I set was five minutes of walking. They all were able to do that.”

For spinal-cord injuries, walking in water is the ideal place because people with this particular injury have a blunted cardiovascular response to any exercise, Stevens explained. The nerves that trigger the heart to beat faster are also impaired nerves that trigger walking. The low muscle tone in their legs coupled with their inability to increase their heart rate result in very poor endurance. It’s a repetitive and nonproductive cycle. Walking in water produces greater blood flow, which increases cardiovascular activity, she said.

“They experience a real psychological boost,” Stevens said. “At first they feel like they’re in the way. After trying initially [to walk], they say, ‘What’s the point—I won’t be able to walk anyway.’”

Popular ambulation therapies include placing the subject in a harness over a treadmill and using robotics to move the person’s legs, Stevens pointed out. “In the water tank … you’re responsible for moving your legs. It’s not a passive activity anymore.”

Toward the end of the study, Stevens said her volunteers were walking up to four trials at eight minutes each. “So they’ve gone from four or five minutes of walking to 32 or 34 minutes. That’s a big improvement.”

When Bob Moody started, he was walking at 1.5 miles an hour in the tank. Now he’s up to 2.5 miles an hour, which is just about a normal gait pattern, Stevens said. Jim Harris started at .33 miles an hour, and “he’s over a mile per hour now, so he’s more than tripled his speed,” Stevens noted. “And Jim was not able to stand independently at all. Now he can stand alone for almost a minute without holding on to anything.” Janette Rodgers went from a wheelchair to a walker with a seat. “So she can push it or sit down and scoot or have somebody push her. She’s doing great at walking in the tank. It’s pretty exciting.”

Stevens said she has given each participant an exercise regimen that they can continue to practice at home. “I think as they gain confidence, they’re changing how they do everything in their daily life. As they challenge themselves everyday, it contributes to their improvement,” she said.

In addition to being an adjunct instructor in exercise science at MTSU, Stevens is a temporary faculty member at Tennessee State University in Nashville in the College of Health Science. She earned her bachelor’s degree at the University of Kansas and Master of Science degree at MTSU. She hopes to complete her doctorate in human performance at MTSU this summer.

Stevens can be contacted at sstevens@tnstate.edu or through MTSU News and Public Affairs, Tom Tozer, 615-898-2919 (ttozer@mtsu.edu). Research participants Rodgers, Harris and Moody can be reached through Stevens or Tozer. Dr. Don Morgan can be contacted through Tozer.

PROFILES

Jim Harris

In 2005, Jim Harris, 57, was injured in a plane crash and suffered a spinal burst that severed pieces of his spinal cord. His doctors said he would never walk again. The underwater treadmill therapy has helped him defy those doctors.

“Even though the medical professionals at the time, said, ‘Well you’ll never get up and walk again,’ Every time I get up, I’m reminded, ‘Ha ha, proved you wrong,’” Harris said.

Harris heard about the underwater therapy program when Sandra Stevens gave a presentation at Vanderbilt Stallworth Rehabilitation Center.

Walking was a challenge at first, Harris said, but now he’s more comfortable walking in the underwater-treadmill tank.

“There’s been an increase in stability and control,” he noted.

In the beginning, Harris was walking three 5-minute cycles at about .28 miles an hour on the treadmill. Now he is walking four 8-minute cycles for more than a mile an hour. The underwater treadmill, Stevens said, gives buoyancy, resistance for strengthening, sensory feedback and slows down reaction time so that his body can process his actions.

“His stride looks more like a normal walking pattern than when he started,” Stevens said. “The quality of his gait has improved.”

Gerry Harris, Jim’s wife, said she thinks Jim’s increase in mobility helps his mental state, too, and he likes coming to the therapy sessions for more than just exercise.

Harris’ ultimate goal is to be able to fly planes again, he said. A year after the plane crash he flew with another pilot, and he said it felt good.

Jim’s injury has not been a hindrance, he said, but has created additional hurdles that are a part of life. The physical exercise he gets from walking on the underwater treadmill has helped him be less fearful about doing other tasks.

“As long as you just have something that you’re reaching for, you always push a little harder,” Harris said.

Bob Moody

Sometimes appearances can be more than deceiving. They can outright lie.

Watching Bob Moody prepare for his underwater-treadmill treatment, under the direction of doctoral student Sandra Stevens, might lead one to think that he is a hopelessly broken man. He struggles to sit down on the bench outside the treatment tank, to adjust his shoes and, occasionally, to draw a breath. The lie is completed by the overly careful steps he takes to enter the tank. When the treadmill begins to rotate, the truth about him and the strength of his body become apparent as he pushes himself to walk faster and longer.

Before becoming significantly paralyzed after falling in a hotel in Hong Kong two years ago, Moody was extremely active and travelled around the world. It is his personal philosophy of turning obstacles into opportunities that has enabled his body to respond positively to the remarkable underwater-treadmill therapy.

“When I first started the program, I could barely get around when I went shopping,” he said. “Now I can go 20 minutes before I need to sit.”

In the first 10 weeks of treatment, he has improved his over-ground walking speed by 20 percent and increased his workout walking speed by 50 percent, while also bolstering his endurance. His overall heightened physical activity has improved the mobility of his arms and hands. It is only recently, for example, that his ability to grip and open jars has returned.

At this point, no one knows the limitations or potential of spinal-cord healing. In Bob Moody’s case, no one knows what it would take to get him to give up trying. Merely settling for what is … is not in his makeup.

“The therapy has made it so that I can go to the recreation center pool in town and train on my own,” Moody added. “I’m strong enough to go it on my own and work out.”

Janette Rodgers

Janette Rodgers of Rockvale, Tenn., suffered a broken neck and spinal cord damage after a car accident in May 2009. She was rushed to Vanderbilt Medical Center, diagnosed with a complete spinal cord injury and told she would never walk again.

"If I were to listen to what they had told me, I'd still be laying in the hospital bed or in a nursing home," Rodgers, 52, said. "With spinal cord injuries you're like a child, you have to learn to do everything again. If you don't keep moving something, it'll quit working."

Six months later, Rodgers is able to walk with aid, and her injury continues to show improvement during her participation in Sandra Stevens' underwater treadmill study.

Rodgers learned about Stevens' research study while attending physical therapy. "One of the ladies there said they were doing research at MTSU and if I was interested, I should check on it. I called and we came over to talk with Sandy and look at the tank, and then we just started," said Rodgers. "I thought this will help me get better faster."

Rodgers had done pool training as part of her physical therapy before, but she says she has not seen results as dramatic as those in Stevens' study. "I've noticed more of an improvement in my walking since I've been doing the treadmill underwater than I have anything."

Rodgers maintains a positive outlook on her future and says the exercise has increased her feeling of well-being. With the underwater-treadmill study now completed, Rodgers plans to resume her traditional physical therapy schedule and possibly begin water aerobics at the YMCA.

Tom Tozer | Newswise Science News
Further information:
http://www.mtsu.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>