Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research uncovers key difference between our bodies' fight against viruses and bacteria

13.01.2014
Scientists at The University of Nottingham have discovered a key difference in the biological mechanisms by which the immune system responds to viral and bacterial pathogens.

The study, published in the journal Nature Immunology and led by Professor Uwe Vinkemeier in the University's School of Life Sciences, centred on STAT1, a protein that can bind DNA and hence plays a vital role in regulating genes in the body.

STAT-1 responds to interferon signals, hormone-like molecules which control communication between cells to trigger defensive action by the body's immune system when pathogens such as bacteria, viruses, or parasites are detected. These powerful defensive actions are also part of the body's ability to control the growth of malignant tumours that can ultimately achieve their complete elimination.

It was previously thought that all interferons used single STAT1-containing units rather than STAT1 chains to regulate the activity of genes. However, using mice bred specially to express a mutated form of STAT1 which is limited to forming single STAT1 units, the Nottingham team has demonstrated that this abolishes the function of some interferons while leaving others largely unaffected.

They found that when the assembly of STAT1 chains was inhibited, type I interferons responsible for protecting against viruses such as vesicular stomatitis virus were unaffected, whereas type II interferons, which protect against bacterial infections such as listeria, no longer functioned effectively.

Professor Vinkemeier said: "The core of these findings is that we are revising a central aspect of what we thought we knew about how these proteins worked. The molecular mechanisms underlying type I and type II interferon functioning are actually more distinct than we previously imagined. This in turn offers new options for rational pharmacological intervention."

For example, type I interferons, involved in the anti-viral response also play a role in stopping cells from growing and replicating — and therefore inhibiting the spread of the virus throughout the body. These interferons are already in clinical use against Hepatitis virus and several cancers and in the treatment of auto-immune diseases like multiple sclerosis. Type-II interferon, in contrast, has been shown to be detrimental in some of these conditions, namely multiple sclerosis and melanoma, an aggressive type of skin cancer.

"In situations like these our finding offers a new target for making current treatments more effective. There is good reason to assume that an inhibitor of STAT1 chain formation could potentially block detrimental type-II interferon responses while keeping type I activities, including anti-viral protection, intact. This would avoid an important shortcoming of current STAT1 inhibitors."

The study was led by The University of Nottingham but involved international collaboration with researchers from Germany at the University of Göttingen Medical Centre and the Max-Planck Institute for Molecular Cell Biology and Genetics in Dresden; the Swiss Tropical and Public Health Institute in Basel, and the University of Vienna in Austria.

A copy of the paper can be found on the web at http://dx.doi.org/10.1038/ni.2794

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>