Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Develop Agents That Keep Insulin Working Longer

11.05.2010
More than half a century after researchers identified a promising way to treat diabetes based on blocking the breakdown of insulin in the body, a research team led by a scientist at the Mayo Clinic campus in Florida have developed potent molecules that can do just that.

The researchers say their findings, published in the May issue of PLoS ONE, could lay the foundation for a new class of drugs for treating diabetes. The tiny molecules they developed work by inhibiting a powerful molecular machine known as insulin-degrading enzyme (IDE) from chewing up the insulin hormone. That keeps insulin in the body longer to help remove glucose (simple food sugar) from the blood.

The discovery may lead to drugs that diabetics can use to help insulin work better and longer, says the study’s lead researcher, Malcolm Leissring, Ph.D., from Mayo Clinic’s Department of Neuroscience. Diabetes affects over 200 million people worldwide, and the incidence is growing at an alarming rate, so new treatments are greatly needed, he says.

IDE is a protease, an enzyme that chops proteins or peptides into smaller pieces. According to Dr. Leissring, inhibitors have been developed for practically all biomedically important proteases in the body. “It was very surprising that IDE inhibitors had not been developed before, particularly given IDE’s special relationship with insulin, a very important hormone,” he says.

This was especially puzzling because IDE was discovered more than 60 years ago. In fact, finding an IDE inhibitor was a major goal of diabetes research in the 1950s. In a landmark study, one group of early researchers managed to purify a naturally occurring IDE inhibitor, and showed that it made insulin more effective at lowering blood glucose in animals, precisely the desired effect for treating diabetes. However, the composition of the agent was never determined.

The research team initially tried to find IDE inhibitors using sophisticated technologies. They used robots to test hundreds of thousands of compounds at the Laboratory for Drug Discovery in Neurodegeneration (LDDN), a part of Brigham and Women’s Hospital and Harvard Medical School. Surprisingly, these modern methods did not identify any good inhibitors, Dr. Leissring says.

“Our robots wound up being powerless for tackling this particular problem,” he says. “Ironically, it was an old-fashioned method that made this breakthrough possible.”

The old-fashioned approach involved using a technology invented in 1950 to figure which peptide sequence — among trillions of possible combinations — IDE chops up most efficiently. Benjamin Turk, Ph.D., of Yale University School of Medicine, conducted this critical step. Then, a team of chemists led by Gregory Cuny, Ph.D., director of Medicinal Chemistry at the LDDN, generated a compound that contained the preferred peptide sequence, together with a special chemical group that binds to zinc. The resulting compound is called “Ii1” (IDE inhibitor 1).

Ii1 is about a million times more potent than any previous IDE inhibitors, but additional work will be needed to turn it into a drug suitable for therapeutic use, Dr. Leissring says. In a key step towards this goal, Dr. Leissring, together with Wei-Jen Tang, Ph.D., and other colleagues from the University of Chicago, solved the 3-dimensional crystal structure of Ii1 bound to IDE. This crystal structure will facilitate the development of inhibitors that are more stable in the body than Ii1 is predicted to be.

The structure of IDE is unlike other proteases, the researchers say. It is shaped like a hinged clamshell that opens and shuts, like the well-known video game protagonist, Pac-Man.

The researchers found from their crystal structure that the Ii1 peptide acts like a magnetic latch that holds the clamshell shut. “Think of a coin purse that uses a magnet at the top to keep the purse from opening up,” Dr. Leissring says. “Ii1 is analogous to the magnetic latch, holding the two halves of IDE closed.”

If IDE is inhibited, insulin remains in the body longer. Normally, about half of the insulin produced by the pancreas is immediately destroyed by the liver; no one knows why this occurs but it may be a way to regulate how much insulin enters the bloodstream, he says.

IDE inhibitors would slow the rate of this initial destruction. However, according to a surprising finding from the study, they would also help prevent degradation of insulin at the “destination” cells that are responsible for removing sugar from the bloodstream. “When insulin reaches cells, it is normally destroyed very rapidly by IDE. We show that when you stop that process with an IDE inhibitor, insulin stays around longer inside the cell, allowing the hormone to function more efficiently,” Dr. Leissring says.

IDE inhibitors may also be beneficial for other diseases besides diabetes, the researchers suggest. “Insulin is involved in a surprisingly wide range of important processes, including memory and cognition, so IDE inhibitors may turn out to have multiple uses. They also will be very valuable as tools for basic research,” says Dr. Leissring.

The study was funded by grants from the National Institutes for Health, the Ellison Medical Foundation, and by a gift from The Unforgettable Fund, a charitable foundation based in Palm Beach County, Fla.

Scientists from The Scripps Research Institute also participated in the study.

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota., western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Kevin Punsky | Newswise Science News
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>