Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows treating HIV-AIDS with interleukin-2 is ineffective

20.10.2009
A team of researchers at the MUHC/McGill and their international colleagues recommend halting all clinical trials on interleukin-2.

An international research team has demonstrated that treating HIV-AIDS with interleukin-2 (IL-2) is ineffective. As a result, the researchers recommend that clinical trials on this compound be stopped. Their finding was published in the New England Journal of Medicine in an article co-authored by 14 researchers, including Dr. Jean-Pierre Routy of the Research Institute of the McGill University Health Centre (RI-MUHC).

IL-2 is currently used as a complement to highly active antiretroviral therapy (known as HAART), which is administered to patients with HIV-AIDS. Since HAART controls replication of viruses in the blood, doctors thought that IL-2 would help regenerate more CD4+ immune cells, which serve as an indicator of viral progression. It was thought that IL-2 increased the natural immunity of patients by helping immune cells mature and multiply.

“Our results show that IL-2 has no effect on the development of AIDS or on patient survival,” says Dr. Routy. “More precisely, while the presence of IL-2 leads to a faster increase of CD4+ immune cells, these cells are less functional than the CD4+ cells that regenerate naturally in patients who do not receive IL-2. This means that IL-2 treatment provides no benefit and does not prevent AIDS-related infectious diseases.”

“For the first time, a study has shed light on recurring questions concerning the value of biological markers and their limitations in assessing patient health,” explains Dr. Routy. “Our challenge now will be to develop tests that assess the function of immune cells and not simply their quantity. This will ensure that HIV treatments indeed have a clinical benefit for patients.”

This 8-year study involved over 5000 patients in 25 countries, and was one of the largest ever conducted on HIV-AIDS. “The fact that data from developing countries was used in biomedical research on innovative compounds is very revolutionary in the history of HIV-AIDS research,” explains Dr. Routy.

Dr. Jean-Pierre Routy is a physician in the Division of Hematology and Immunodeficiency at the MUHC as well as a researcher in the Infection and Immunity Axis at the Research Institute of the MUHC. He is also an Associate Professor of Hematology at McGill University and a senior clinical researcher with the Fonds de la recherche en santé du Québec (FRSQ).

Funding
This study was funded by a grant from the National Institutes of Health (NIH)
Partners
This article was co-authored by Dr. D. Abrams, University of California, San Francisco; Dr. Y. Lévy, INSERM U955, Université Paris 12, et Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Dr. M.H. Losso, Hospital General de Agudos, Dr. J.M. Ramos Mejia, Buenos Aires; Dr. A. Babiker, Medical Research Council, London; Dr. G. Collins, University of Minnesota, Minneapolis; Dr. D. Cooper, National Centre in HIV Epidemiology and Clinical Research, Sydney; Dr. J. Darbyshire, Medical Research Council, London; Dr. S. Emery, National Centre in HIV Epidemiology and Clinical Research, Sydney; Dr. L. Fox, National Institute of Allergy and Infectious Diseases, Bethesda; Dr. F. Gordin, Washington Veterans Medical Center, Washington, DC; Dr. H.C. Lane, National Institutes of Health, Bethesda; Dr. J.D. Lundgren, Rigshospitalet & University of Copenhagen, Copenhagen; Dr. R. Mitsuyasu, University of California, Los Angeles; Dr. J.D. Neaton, University of Minnesota, Minneapolis; Dr. A. Phillips, University College London Medical School, London; Dr. J.P Routy, Royal Victoria Hospital, McGill University Health Centre; Dr. G. Tambussi, Fondazione San Raffaele del Monte Tabor, Milano; Dr. D. Wentworth, University of Minnesota, Minneapolis.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec. For further details visit: www.muhc.ca/research

You will find this press release, with the original article and a short audio interview by following this link:http://www.muhc.ca/media/news/

For more information please contact:

Julie Robert
Communications Coordinator (research)
MUHC Public Affairs & Strategic Planning
(514) 843 1560
julie.robert@muhc.mcgill.ca

Julie Robert | EurekAlert!
Further information:
http://www.muhc.ca/media/news/
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>