Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Nerve Stimulation Can Help Reorganize Brain

20.07.2012
UT Dallas researchers recently demonstrated how nerve stimulation paired with specific experiences, such as movements or sounds, can reorganize the brain. This technology could lead to new treatments for stroke, tinnitus, autism and other disorders.

In a related paper, UT Dallas neuroscientists showed that they could alter the speed at which the brain works in laboratory animals by pairing stimulation of the vagus nerve with fast or slow sounds.

A team led by Dr. Robert Rennaker and Dr. Michael Kilgard looked at whether repeatedly pairing vagus nerve stimulation with a specific movement would change neural activity within the laboratory rats’ primary motor cortex. To test the hypothesis, they paired the vagus nerve stimulation with movements of the forelimb in two groups of rats. The results were published in a recent issue of Cerebral Cortex.

After five days of stimulation and movement pairing, the researchers examined the brain activity in response to the stimulation. The rats who received the training along with the stimulation displayed large changes in the organization of the brain’s movement control system. The animals receiving identical motor training without stimulation pairing did not exhibit any brain changes, or plasticity.

People who suffer strokes or brain trauma often undergo rehabilitation that includes repeated movement of the affected limb in an effort to regain motor skills. It is believed that repeated use of the affected limb causes reorganization of the brain essential to recovery. The recent study suggests that pairing vagus nerve stimulation with standard therapy may result in more rapid and extensive reorganization of the brain, offering the potential for speeding and improving recovery following stroke, said Rennaker, associate professor in The University of Texas at Dallas’ School of Behavioral and Brain Sciences

“Our goal is to use the brain’s natural neuromodulatory systems to enhance the effectiveness of standard therapies,” Rennaker said. “Our studies in sensory and motor cortex suggest that the technique has the potential to enhance treatments for neurological conditions ranging from chronic pain to motor disorders. Future studies will investigate its effectiveness in treating cognitive impairments.”

Since vagus nerve stimulation has an excellent safety record in human patients with epilepsy, the technique provides a new method to treat brain conditions in which the timing of brain responses is abnormal, including dyslexia and schizophrenia.

In another paper in the journal Experimental Neurology, Kilgard led a team that paired vagus nerve stimulation with audio tones of varying speeds to alter the rate of activity within the rats’ brains. The team reported that this technique induced neural plasticity within the auditory cortex, which controls hearing.

“Our goal is to use the brain’s natural neuromodulatory systems to enhance the effectiveness of standard therapies,” Dr. Rennaker said.

The UT Dallas researchers are working with a device developed by MicroTransponder, a biotechnology firm affiliated with the University. MicroTransponder currently is testing a vagus nerve stimulation therapy on human patients in Europe in hopes of reducing or eliminating the symptoms of tinnitus, the debilitating disorder often described as “ringing in the ears.”

“Understanding how brain networks self-organize themselves is vitally important to developing new ways to rehabilitate patients diagnosed with autism, dyslexia, stroke, schizophrenia and Alzheimer’s disease,” said Kilgard, a professor of neuroscience.

Treatment of neurological disease is currently limited to pharmacological, surgical or behavioral interventions. But this recent research indicates it may be possible to effectively manipulate the plasticity of the human brain for a variety of purposes. Patients then could benefit from brain activity intentionally directed toward rebuilding lost skills.

If subsequent studies confirm the UT Dallas findings, human patients may have access to more efficient therapies that are minimally invasive and avoid long-term use of drugs.

Media Contact: Emily Martinez, UT Dallas, (214) 905-3049, emily.martinez@utdallas.edu

or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

Emily Martinez | EurekAlert!
Further information:
http://www.utdallas.edu
http://www.utdallas.edu/news/2012/7/19-18871_Research-Shows-Nerve-Stimulation-Can-Help-Reorgani_article-wide.html?WT.mc_id=NewsHomePage

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>