Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on epilepsy

01.12.2009
Pioneering research using human brain tissue removed from people suffering from epilepsy has opened the door to new treatments for the disease.

Scientists at Newcastle University have for the first time been able to record spontaneous epileptic activity in brain tissue that has been removed from patients undergoing neurosurgery.

Led by Newcastle University's Dr Mark Cunningham, the research has revealed that a particular type of brain wave pattern associated with epilepsy is caused by electrical connections between nerve cells in the brain – rather than chemical ones. This means the traditional drugs are useless to them.

Published today in the Proceedings of the National Academy of Sciences (PNAS), Dr Cunningham said the findings marked a huge step forward in our understanding of a disease which affects an estimated 45 million people worldwide.

"Until now we have only been able to mimic epilepsy using experimental animal models but this can never give you a true picture of what is actually going on inside the human brain in epilepsy," explained Dr Cunningham who is based in Newcastle University's Institute of Neuroscience.

"Our findings help us to understand what is going wrong and are an important step towards finding new epilepsy treatments in the future."

The study

The first line of treatment for patients with epilepsy uses anti-epileptic drugs to control seizures.

However, in almost 30 per cent of patients the drugs don't work. In this case, one course of action available to them is a neurosurgical procedure in which the brain tissue responsible for the epilepsy is removed from the patient.

Working in collaboration with the Epilepsy Surgery Group at Newcastle General Hospital and IBM Watson Research Centre in New York, the team – with permission from the patients – have taken this epileptic tissue into the lab and 'fooled' it into thinking it is still part of the living brain.

They have then been able to record electrical signals from individual neurons and also networks of neurons.

Comparing this with normal brain tissue activity they managed to record an underlying 'noise' – a particular type of brain wave, or oscillation, which occurs in the intact epileptic human brain and which scientists believe is a precursor to an epileptic seizure.

Using a combination of experimental techniques, the team have shown that rather than being controlled by chemical signals which most conventional anti-epileptic drugs target, this oscillation relies on direct electrical connections.

"This may explain why the traditional drugs that target chemical connections don't work for patients with this kind of epilepsy," explains Dr Cunningham, who conducted the research with his colleague Professor Miles Whittington.

"These findings have massively increased our understanding of epilepsy and offer real hope in terms of finding new ways of tackling the disease.

"The next step is to understand what it is that triggers the transition between the underlying epileptic state of the brain cells and the fast oscillations that are responsible for causing a seizure."

Dr. Mark Cunningham | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>