Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research sheds new light on epilepsy

Pioneering research using human brain tissue removed from people suffering from epilepsy has opened the door to new treatments for the disease.

Scientists at Newcastle University have for the first time been able to record spontaneous epileptic activity in brain tissue that has been removed from patients undergoing neurosurgery.

Led by Newcastle University's Dr Mark Cunningham, the research has revealed that a particular type of brain wave pattern associated with epilepsy is caused by electrical connections between nerve cells in the brain – rather than chemical ones. This means the traditional drugs are useless to them.

Published today in the Proceedings of the National Academy of Sciences (PNAS), Dr Cunningham said the findings marked a huge step forward in our understanding of a disease which affects an estimated 45 million people worldwide.

"Until now we have only been able to mimic epilepsy using experimental animal models but this can never give you a true picture of what is actually going on inside the human brain in epilepsy," explained Dr Cunningham who is based in Newcastle University's Institute of Neuroscience.

"Our findings help us to understand what is going wrong and are an important step towards finding new epilepsy treatments in the future."

The study

The first line of treatment for patients with epilepsy uses anti-epileptic drugs to control seizures.

However, in almost 30 per cent of patients the drugs don't work. In this case, one course of action available to them is a neurosurgical procedure in which the brain tissue responsible for the epilepsy is removed from the patient.

Working in collaboration with the Epilepsy Surgery Group at Newcastle General Hospital and IBM Watson Research Centre in New York, the team – with permission from the patients – have taken this epileptic tissue into the lab and 'fooled' it into thinking it is still part of the living brain.

They have then been able to record electrical signals from individual neurons and also networks of neurons.

Comparing this with normal brain tissue activity they managed to record an underlying 'noise' – a particular type of brain wave, or oscillation, which occurs in the intact epileptic human brain and which scientists believe is a precursor to an epileptic seizure.

Using a combination of experimental techniques, the team have shown that rather than being controlled by chemical signals which most conventional anti-epileptic drugs target, this oscillation relies on direct electrical connections.

"This may explain why the traditional drugs that target chemical connections don't work for patients with this kind of epilepsy," explains Dr Cunningham, who conducted the research with his colleague Professor Miles Whittington.

"These findings have massively increased our understanding of epilepsy and offer real hope in terms of finding new ways of tackling the disease.

"The next step is to understand what it is that triggers the transition between the underlying epileptic state of the brain cells and the fast oscillations that are responsible for causing a seizure."

Dr. Mark Cunningham | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>