Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project analyses cerebral bioelectricity in order to detect epilepsy

19.07.2010
A group of researchers from Universidad Carlos III de Madrid (UC3M) has presented a new algorithm that uses a new method to analyse the information obtained from electroencephalograms to detect neurodegenerative diseases, such as epilepsy, using the bioelectric signals of the brain.

The research project is a joint effort among engineers and doctors from UC3M, the Clínica Universitaria de Navarra and Universidad Pública de Navarra. It began as a collaborative project designed to discover and interpret bioelectric phenomenon originating in the cerebral cortex.

The objective of this research was to apply these studies to the analysis of different pathologies such as Parkinson’s disease, Alzheimer or epilepsy. Electroencephalography was used as a means of obtaining cerebral signals. This technique uses electrodes placed on the surface of the scalp to perform a test that measures and records the electrical activity generated in the brain.

The first results recorded by the scientists were promising and showed a need to reduce the amount of information obtained from electroencephalograms due to the fact that the analysis of all the data requires a great deal of time and large processing capacity. In order to achieve this aim more efficiently, the scientists designed an algorithm that allows them to extract the most relevant characteristics of the signals associated with epilepsy. Thus, they are able to detect and classify more quickly epileptic seizures as well as determine which parts or areas of the brain are affected the most.
“The advantage of this method is that it allows us to detect, classify or identify neurological diseases with a small amount of information” says Carlos Guerrero Mosquera, one of the researchers from the Department of Signal and Communications Theory (Departamento de Teoría de la Señal y Comunicaciones) at UC3M. He adds, “Electroencephalograms contain a lot of information and what we are looking for is to try to improve the efficiency of the tasks carried out by analysing small amounts of information through the use of the most important data received from the signals.”

Presentation to the public

This new method, published recently in the journal Medical & Biological Engineering & Computing, has been compared to other techniques and the results of this analysis will be presented at the International Conference of the IEEE Engineering in Medicine and Biology Society. This event, which is one of the most important biomedical engineering conferences, will take place in Buenos Aires (Argentina) from the 31st August until 4th September. In general terms, this method can be divided into four fundamental processes: the acquisition of a signal through the use of electroencephalography, cleaning or pre-processing of the signal in order to eliminate noise and the extraction/selection of characteristics depending on how the information will be used. “The detection of data should follow a linear procedure but for the moment, we use databases”, Carlos Guerrero points out. “At a later date, when the application shows positive results, we will try to reduce processing costs by the selection of specific characteristics.”

The researchers explain that this method extracts information about the time and frequency pattern of the signal in a new and simple way. This makes it easier to detect and classify segments with epilepsy and opens up the possibility of applying the algorithm to other pathologies. “Initially this method was developed to classify and detect epileptic seizures, but in the future we wish to apply it to other neurodegenerative diseases such as Parkinson’s, Alzheimer or the analysis of different sleep disorders,” Guerrero explains.

Further information:
Title: New feature extraction approach for epileptic EEG signal detection using time-frequency distributions
Authors: Carlos Guerrero Mosquera, Armando Malanda Trigueros, Jorge Iriarte Franco,
Ángel Navia Vázquez.
Source: Medical & Biological Engineering & Computing.
Volume: 48 Number: 4 Pages: 321-330 Published: april 2010

Ana Herrera | EurekAlert!
Further information:
http://www.uc3m.es

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>