Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research paper says we are still at risk of the plague

18.03.2013
Historical review provides lessons for the control of the plague

Today archaeologists unearthed a 'Black Death' grave in London, containing more than a dozen skeletons of people suspected to have died from the plague. The victims are thought to have died during the 14th century and archaeologists anticipate finding many more as they excavate the site.

The Plague is by definition a re-emerging infectious disease which affects the lungs and is highly contagious, leading to mass outbreaks across populations. History shows us that population levels suffered globally due to the plague, with around 75 million people globally perishing during the 14th century Black Death.

This study, published in Infection, Genetics and Evolution, analysed the Great Plague of Marseille, which caused 100,000 deaths between 1720 and 1723. The researchers aimed to highlight issues we are facing with infectious diseases today, to identify the best ways to respond to epidemics and whether we are still at risk of the plague re-emerging again.

Results show that a number of factors show we are still at risk of plague today. This is largely due to transport trade and novel threats in developing countries where multi-drug resistant pathogens are currently emerging and spreading rapidly. This genetic change has also contributed to a development in the way the bacteria infect new hosts meaning they can now live in mammalian blood.

The study also highlighted the need for effective management of epidemics in future. Fear of in infection can have a negative impact on a population's economic situation due to a significant loss of tourism, and widespread panic. History has shown us that providing the necessary information about diseases and improving the management of epidemics are vital steps for avoiding panic and containing diseases.

Notes for editors

This article is "Small oversights that led to the Great Plague of Marseille (1720 - 1723): Lessons from the past" by Christian A. Devaux (DOI: 10.1016/j.meegid.2012.11.016,) and appears in Infection, Genetics and Evolution published by Elsevier.

The article is available to credentialed journalists at no charge through free access to ScienceDirect, the world's largest repository of scientific information. Please use your ScienceDirect media login and password to access the full text research paper. For a new media login, forgotten password or if you have any specific questions, please contact newsroom@elsevier.com.

If you are a credentialed journalist and are interested in receiving other research alerts from Elsevier, please sign up for Elsevier's Monthly Research Selection (EMRS) - a monthly email developed by the Elsevier Newsroom which highlights new, interesting, interesting or otherwise intriguing research articles for health and science media. The full text research articles included are peer reviewed and have been publicly available for no more than 4-6 weeks (they are usually articles-in-press). They have not been press-released nor covered in the media (that we are aware of) and they are not embargoed.

If you would like to sign up for the EMRS please send an email to newsroom@elsevier.com

Sacha Boucherie | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: EMRS Elsevier Evolution Great Basin Infection black populations infectious disease plague

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>