Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could improve detection of liver damage

17.09.2010
Research at the University of Liverpool could lead to faster and more accurate diagnoses of liver damage.

The team used paracetamol as the basis for the study: research indicates that paracetamol can place temporary stress on the liver in around a third of people who take a normal dose (4g per day) but the liver returns to normal when the drug has left the system. Overdoses of the drug are a major cause of liver failure in both the UK and US.

Scientists have discovered that the presence of specific proteins in the blood are indicative of early liver cell damage and can determine the point at which cell death occurred, the type of cell death, and the extent of any damage. This could lead to liver damage being assessed faster and more accurately in the future – information which could prove valuable when treating people following drug overdoses.

The current blood test used by clinicians to assess liver function simply indicates whether liver enzymes leaking from dying cells can be detected in the blood. The test is not always reliable because positive results are often, but not always, an indicator of serious underlying liver problems.

Scientists induced a mild paracetamol overdose in mice and discovered that proteins released by cells in the liver – HMGB1 and keratin 18 – provided a detailed picture of the level of cell damage. The release of HMGB1 was associated with necrosis – a process in which a cell bursts and dies – while the release of different types of keratin 18 was associated with both apoptosis – a process of normal cell renewal – and necrosis. This latter combination of both types of cell death is significantly less traumatic for the liver than necrosis alone in paracetamol overdose.

Pharmacologist, Dr Dominic Williams, from the University's Medical Research Council Centre for Drug Safety Science, said: "The findings are significant because knowing how the cells die will allow development of medicines to help them survive, and may also distinguish patients who have severe injury and require intensive care from those who have mild injury.

"The research has implications for determining how much stress has been placed on the liver in patients who are worried about an accidental overdose, as well as the more serious overdose cases."

The research is published in Molecular Medicine.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

Further reports about: HMGB1 cell death liver damage necrosis specific protein temporary stress

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>