Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could improve detection of liver damage

17.09.2010
Research at the University of Liverpool could lead to faster and more accurate diagnoses of liver damage.

The team used paracetamol as the basis for the study: research indicates that paracetamol can place temporary stress on the liver in around a third of people who take a normal dose (4g per day) but the liver returns to normal when the drug has left the system. Overdoses of the drug are a major cause of liver failure in both the UK and US.

Scientists have discovered that the presence of specific proteins in the blood are indicative of early liver cell damage and can determine the point at which cell death occurred, the type of cell death, and the extent of any damage. This could lead to liver damage being assessed faster and more accurately in the future – information which could prove valuable when treating people following drug overdoses.

The current blood test used by clinicians to assess liver function simply indicates whether liver enzymes leaking from dying cells can be detected in the blood. The test is not always reliable because positive results are often, but not always, an indicator of serious underlying liver problems.

Scientists induced a mild paracetamol overdose in mice and discovered that proteins released by cells in the liver – HMGB1 and keratin 18 – provided a detailed picture of the level of cell damage. The release of HMGB1 was associated with necrosis – a process in which a cell bursts and dies – while the release of different types of keratin 18 was associated with both apoptosis – a process of normal cell renewal – and necrosis. This latter combination of both types of cell death is significantly less traumatic for the liver than necrosis alone in paracetamol overdose.

Pharmacologist, Dr Dominic Williams, from the University's Medical Research Council Centre for Drug Safety Science, said: "The findings are significant because knowing how the cells die will allow development of medicines to help them survive, and may also distinguish patients who have severe injury and require intensive care from those who have mild injury.

"The research has implications for determining how much stress has been placed on the liver in patients who are worried about an accidental overdose, as well as the more serious overdose cases."

The research is published in Molecular Medicine.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

Further reports about: HMGB1 cell death liver damage necrosis specific protein temporary stress

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>