Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies a promising new therapeutic target for aggressive breast cancer

01.08.2012
Scientists at Western University have identified a new therapeutic target for advanced breast cancer which has shown tremendous promise in mouse models.

The study led by Lynne-Marie Postovit of Western's Schulich School of Medicine & Dentistry looked at a protein called Nodal that is primarily found in embryonic or stem cells. Postovit discovered high levels of this protein in aggressive breast cancer tumors. Nodal was found to promote vascularization in the tumor, providing nutrients and oxygen to help it grow and spread. The research is published online in the journal Cancer Research.

"We have determined that breast cancers, specifically those very aggressive, invasive breast cancers that spread, express an embryonic protein called Nodal and the expression of this protein is correlated with more blood vessels in the tumor. Blood vessels, many studies have shown, help to allow tumors to grow but also to spread throughout the body," says Postovit of the Department of Anatomy and Cell Biology. "In addition, we have shown that if we can target this embryonic protein, we can cause the blood vessels to collapse within the tumor, leading to decreased oxygen levels and tumor cell death. When tumors lack oxygen and nutrients they become what we call necrotic."

In the study, mouse models were designed to develop breast cancer tumors. Then, using a genetic modification, the researchers turned off the expression of Nodal. When they did that, the blood vessels in the tumor appeared to collapse, and the tumor was less aggressive. Nodal is on the outside of the cell, so it can be easily targeted by a number of mechanisms including antibodies. And because Nodal isn't expressed in normal tissue in the body, it would be possible to target just the cancer, allowing for better patient outcomes.

"Ultimately it would be nice to target Nodal in patients who already have quite advanced, well-vascularized tumors as a new option for therapy," says Daniela Quail, first author on the research and a PhD candidate in the Postovit lab. "Currently, patients like this don't have many options."

"In Canada, breast cancer continues to be one of the most common forms of cancer in women. Although new treatment methods have improved outcomes, a significant number of women still die from this disease", says Dr. Morag Park, Scientific Director of the Canadian Institutes of Health Research. "Research advancements, such as Dr. Postovit's, have contributed and will continue to contribute to the improvements around our understanding of cancer progression and treatment. I congratulate Dr. Postovit and the team on this advancement and its significant contribution to this field."

The research was funded by the Canadian Institutes of Health Research, the Cancer Research Society and the Canadian Breast Cancer Foundation.

Media contact: Jeff Renaud, Senior Media Relations Officer, Western University, 519-661-2111 ext. 85165, jrenaud9@uwo.ca

Jeff Renaud | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>