Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research hope for bladder cancer

01.08.2013
Bladder cancer is a common condition – an estimated 10,000 people are diagnosed with the disease each year in the UK. It is the seventh most common cancer in the UK, affecting men more than women.

Some people develop invasive bladder cancer, which is where the cancer has grown through the muscle layer of the bladder. When this occurs, there is a higher risk that the cancer will spread to other areas of the body and it is much more difficult to treat.

Until now the signalling process that allows a benign, small polyp to develop into something that spreads and is invasive has not been clear. But research carried out by a team at Plymouth University has for the first identified an important mechanism behind this process.

The research is published today 1st August 2013 in the American Journal of Physiology – Renal Physiology.

Key to the research is a protein, pancreatic secretory trypsin inhibitor (PSTI), which is present in most bladder cancers. The research has identified the role PSTI plays in the signalling process that allows the spread and invasion of bladder cancer.

By understanding the process by which this protein helps the cells to spread, and invade into other tissue, researchers can start to develop ways to interrupt this process, potentially leading to new treatments.. This has the potential to improve the survival and life quality of those with early diagnosed bladder cancer, and reduce the instances where rigorous drug regimes or invasive surgery are required.

The research was led by Professor Raymond Playford and Dr. Tanya Marchbank from Plymouth University. Professor Playford said: "Although bladder cancer can be readily treated if caught early enough, once it starts to invade into deeper tissues and spread to distant sites it is a much more difficult, painful and life-affecting cancer to live with. Treatment becomes more difficult as tumours grow deeper into the bladder wall and spread, and survival rates decline – it is estimated that just 25 per cent of those with severe invasive bladder cancer will be alive and well three years after diagnosis and treatment. By identifying the mechanism by which bladder cancer develops and spreads, we hope that in time therapies that manipulate this mechanism may be developed to improve the quality of life and survival rates of those with invasive bladder cancer."

Note to Editors

Bladder cancer symptoms include blood in the urine, the need to pass urine frequently, the need to pass urine urgently, and pain when passing urine. However, these symptoms are not exclusive to bladder cancer and may indicate other conditions, such as a urine infection. If these symptoms are present it is advisable to have them checked by a doctor

Bladder cancer usually takes a long time to develop and is most common in people aged between 50 and 80. It is unusual in those under 40 years of age

A number of factors increase the risk of bladder cancer, including: smoking; chemicals at work; treatment for other cancers; prostate surgery; diabetes; repeated bladder infections; bladder stones; diet and alcohol intake; family history; early menopause

Source: Cancer Research UK

Andrew Gould | EurekAlert!
Further information:
http://www.plymouth.ac.uk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>