Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research helps explain why elderly have trouble sleeping


A group of neurons are found to function as a 'sleep switch' in the brain

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom of aging tends to be especially pronounced, often leading to nighttime confusion and wandering.

Now, a study led by researchers at Beth Israel Deaconess Medical Center (BIDMC) and the University of Toronto/Sunnybrook Health Sciences Center helps explain why sleep becomes more fragmented with age. Reported online today in the journal Brain, the new findings demonstrate for the first time that a group of inhibitory neurons, whose loss leads to sleep disruption in experimental animals, are substantially diminished among the elderly and individuals with Alzheimer's disease, and that this, in turn, is accompanied by sleep disruption.

"On average, a person in his 70s has about one hour less sleep per night than a person in his 20s," explains senior author Clifford B. Saper, MD, PhD, Chairman of Neurology at BIDMC and James Jackson Putnam Professor of Neurology at Harvard Medical School. "Sleep loss and sleep fragmentation is associated with a number of health issues, including cognitive dysfunction, increased blood pressure and vascular disease, and a tendency to develop type 2 diabetes. It now appears that loss of these neurons may be contributing to these various disorders as people age."

In 1996, the Saper lab first discovered that the ventrolateral preoptic nucleus, a key cell group of inhibitory neurons, was functioning as a "sleep switch" in rats, turning off the brain's arousal systems to enable animals to fall asleep. "Our experiments in animals showed that loss of these neurons produced profound insomnia, with animals sleeping only about 50 percent as much as normal and their remaining sleep being fragmented and disrupted," he explains.

A group of cells in the human brain, the intermediate nucleus, is located in a similar location and has the same inhibitory neurotransmitter, galanin, as the vetrolateral preoptic nucleus in rats. The authors hypothesized that if the intermediate nucleus was important for human sleep and was homologous to the animal's ventrolateral preoptic nucleus, then it may also similarly regulate humans' sleep-wake cycles.

In order to test this hypothesis, the investigators analyzed data from the Rush Memory and Aging Project, a community-based study of aging and dementia which began in 1997 and has been following a group of almost 1,000 subjects who entered the study as healthy 65-year-olds and are followed until their deaths, at which point their brains are donated for research.

"Since 2005, most of the subjects in the Memory and Aging Project have been undergoing actigraphic recording every two years. This consists of their wearing a small wristwatch-type device on their non-dominant arm for seven to 10 days," explains first author Andrew S. P. Lim, MD, of the University of Toronto and Sunnybrook Health Sciences Center and formerly a member of the Saper lab. The actigraphy device, which is waterproof, is worn 24 hours a day and thereby monitors all movements, large and small, divided into 15-second intervals. "Our previous work had determined that these actigraphic recordings are a good measure of the amount and quality of sleep," adds Lim.

The authors examined the brains of 45 study subjects (median age at death, 89.2), identifying ventrolateral preoptic neurons by staining the brains for the neurotransmitter galanin. They then correlated the actigraphic rest-activity behavior of the 45 individuals in the year prior to their deaths with the number of remaining ventrolateral preoptic neurons at autopsy.

"We found that in the older patients who did not have Alzheimer's disease, the number of ventrolateral preoptic neurons correlated inversely with the amount of sleep fragmentation," says Saper. "The fewer the neurons, the more fragmented the sleep became." The subjects with the largest amount of neurons (greater than 6,000) spent 50 percent or more of total rest time in the prolonged periods of non-movement most likely to represent sleep while subjects with the fewest ventrolateral preoptic neurons (less than 3,000) spent less than 40 percent of total rest time in extended periods of rest. The results further showed that among Alzheimer's patients, most sleep impairment seemed to be related to the number of ventrolateral preoptic neurons that had been lost.

"These findings provide the first evidence that the ventrolateral preoptic nucleus in humans probably plays a key role in causing sleep, and functions in a similar way to other species that have been studied," says Saper. "The loss of these neurons with aging and with Alzheimer's disease may be an important reason why older individuals often face sleep disruptions. These results may, therefore, lead to new methods to diminish sleep problems in the elderly and prevent sleep-deprivation-related cognitive decline in people with dementia."


Co-authors include BIDMC investigators Brian A Ellison and Joshua L. Wang; and Rush University investigators Lei Yu, Julie A. Schneider, Aron S. Buchman and David A. Bennett.

This work was supported by a Dana Foundation Clinical Neuroscience Grant and National Institutes of Health grants P01AG009975, P01HL095491, R01NS072337, R01AG017917, R01AG024480, R01NS078009, R01AG043379 and R01AG042210. Other support came from grants from the Canadian Institutes of Health, the Illinois Department of Public Health and the Robert C. Borwell Endowment Fund.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit

Bonnie Prescott | Eurek Alert!

Further reports about: Alzheimer's BIDMC Deaconess Health Medical animals inhibitory investigators neurons sleep

More articles from Health and Medicine:

nachricht University of California Scientists Create Malaria-Blocking Mosquitoes
30.11.2015 | University of California, Irvine

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>