Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research helps explain why bird flu has not caused a pandemic

20.11.2009
Bird flu viruses would have to make at least two simultaneous genetic mutations before they could be transmitted readily from human to human, according to research published today in PLoS ONE.

The authors of the new study, from Imperial College London, the University of Reading and the University of North Carolina, USA, argue that it is very unlikely that two genetic mutations would occur at the same time.

Today's new study adds to our understanding of why avian influenza has not yet caused a pandemic. Earlier this year, the Imperial researchers also showed that avian influenza viruses do not thrive in humans because, at 32 degrees Celsius, the temperature inside a person's nose is too low.

H5 strains of influenza are widespread in bird populations around the world. The viruses occasionally infect humans and the H5N1 strain has infected more than 400 people since 2003.

H5N1 has a high mortality rate in humans, at around 60 per cent, but to date there has been no sustained human to human transmission of the virus, which would need to happen in order for a pandemic to occur.

Today's study suggests that one reason why H5N1 has not yet caused a pandemic is that two genetic mutations would need to happen to the virus at the same time in order to enable it to infect the right cells and become transmissible. At present, H5 viruses can only infect one of the two main types of cell in the mouth and nose, a type of cell known as a ciliated cell. In order for H5 to transmit from human to human, it would need to be able to infect the other, non-ciliated type of cell as well.

To infect a cell, the influenza virus uses a protein called HA to attach itself to a receptor molecule on the cell's surface. However, it can only do this if the HA protein fits that particular receptor. Today's research shows that H5 would only be able to make this kind of adaptation and fit the receptor on the cells that are important for virus transmission if it went through two simultaneous genetic mutations.

Professor Wendy Barclay, corresponding author of the study from the Division of Investigative Science at Imperial College London, said: "H5N1 is a particularly nasty virus, so when humans started to get infected with bird flu, people started to panic. An H5N1 pandemic would be devastating for global health. Thankfully, we haven't yet had a major outbreak, and this has led some people to ask, what happened to bird flu? We wanted to know why the virus hasn't been able to jump from human to human easily.

"Our new research suggests that it is less likely than we thought that H5N1 will cause a pandemic, because it's far harder for it to infect the right cells. The odds of it undergoing the kind of double mutation that would be needed are extremely low. However, viruses mutate all the time, so we shouldn't be complacent. Our new findings do not mean that this kind of pandemic could never happen. It's important that scientists keep working on vaccines so that people can be protected if such an event occurs," added Professor Barclay.

Professor Ian Jones, leader of the collaborating group at the University of Reading, added: "It would have been impossible to do this research using mutation of the real H5N1 virus as we could have been creating the very strain we fear. However, our novel recombinant approach has allowed us to safely address the question of H5 adaptation and provide the answer that it is very unlikely."

In addition to explaining why bird flu's ability to transmit between humans is limited, the new research also gives scientists a better understanding of the virus. They believe that this could help the development of a better vaccine against bird flu, in the unlikely event that one was needed in the future.

The researchers used a realistic model of the inside of a human airway to study H5 binding to human cells. They made genetic changes to the H5 HA protein to change its shape, to see if they could make the virus recognise and infect the right types of cells. Results showed that the virus would need two genetic changes occurring at once in its genome before it could infect these cells.

The researchers then investigated intermediate forms of the virus, with one or the other mutation, to see if the change could occur gradually. They found that intermediate versions of the virus could not infect human cells, so would die out before they could be transmitted. The researchers say this means the two genetic mutations would need to occur simultaneously.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>