Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds newer radiation therapy technology improves patients' quality of life

27.01.2012
Fewer permanent disabilities and other side effects from treatment reported

Patients with head and neck cancers who have been treated with newer, more sophisticated radiation therapy technology enjoy a better quality of life than those treated with older radiation therapy equipment, a study by UC Davis researchers has found.

The findings, presented today at the Multidisciplinary Head and Neck Cancer Symposium in Phoenix, is the first of its kind to measure long-term quality of life among cancer patients who have undergone radiation therapy for advanced cancers of the throat, tongue, vocal cords, and other structures in the head and neck.

Allen Chen, assistant professor and director of the residency and fellowship training program in the UC Davis Department of Radiation Oncology, reported that the use of intensity-modulated radiation therapy, or IMRT, was associated with fewer long-term side effects, which led to a better quality of life. Standard radiation therapy to the head and neck has been known to affect a patient's ability to produce saliva, taste, and even chew food. These side effects historically have resulted in permanent disabilities.

"With the newer machines using IMRT, physicians are skillfully able to deliver higher doses of radiation to the tumor and lower doses to surrounding normal tissues than ever before," Chen said. "I wanted to see if this theoretical advantage resulted in any tangible improvements in quality of life for patients."

For the study, Chen used the University of Washington Quality of Life instrument, a standardized, previously validated questionnaire that patients complete after radiation therapy. The survey was administered prospectively to 155 patients at UC Davis Cancer Center diagnosed with head and neck cancers, 54 percent of whom were initially treated with IMRT and 46 percent of whom were treated with other radiation therapy technologies. All of the patients receiving IMRT also underwent image-guided radiotherapy (IGRT), which has been available at UC Davis since 2006 and is used to increase accuracy by taking a high-quality scan of the tumor daily.

Chen and his colleagues found that the early gains observed in quality of life became magnified over time for those who received IMRT treatment. For example, one year after treatment, 51 percent of the IMRT patients rated their quality of life as very good or outstanding, compared to 41 percent of non-IMRT patients. But two years after treatment, the percentages changed to 73 percent and 49 percent respectively.

John Torres of Sacramento was diagnosed in early 2010 with a large tumor at the base of his tongue on the right side of his throat. Fearing that surgery might result in the loss of his voice box, Torres opted for IMRT with IGRT and had 33 treatments.

Torres, now 73 and in remission, points out that the treatments were "no walk in the park," but said he is faring much better than he expected. Although his mouth is often dry and he has lost some taste sensation, he is enjoying an active life.

"I golf a couple of time a week," he said. "My wife and I like to socialize. We go out, and we dance. And we are planning to take a cruise through the Panama Canal in next two or three months. Life has gotten back to pretty much exactly what it was."

Chen acknowledged that quality of life is difficult to measure because of its subjective nature. Nonetheless, he said the findings support the more widespread use of IMRT in radiation clinics throughout the country.

"There has been some reluctance to utilize it because it is expensive, resource intensive, and takes on average 10 to 12 hours to prepare a single patient's treatment," he said. "I think this is further evidence that our investment in developing newer technologies is really paying off."

Chen, whose findings will be highlighted at a symposium press briefing on Friday, Jan. 27, received no outside funding for the research. Other investigators who collaborated on the study were Gregory Farwell, Quang Luu, Esther Vazquez, Derick Lau, and James Purdy, all from the UC Davis Cancer Center.

UC Davis Cancer Center is the only National Cancer Institute- designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its top specialists provide compassionate, comprehensive care for more than 9,000 adults and children every year, and offer patients access to more than 150 clinical trials at any given time. Its innovative research program includes more than 280 scientists at UC Davis and Lawrence Livermore National Laboratory. The unique partnership, the first between a major cancer center and national laboratory, has resulted in the discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis is collaborating with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer-care services. For more information, visit cancer.ucdavis.edu.

Dorsey Griffith | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>