Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research advances therapy to protect against dengue virus

09.04.2013
MIT team presents a novel approach to developing a treatment using mutated antibodies.

Nearly half of the world’s population is at risk of infection by the dengue virus, yet there is no specific treatment for the disease. Now a therapy to protect people from the virus could finally be a step closer, thanks to a team at MIT.

In a paper published today in the Proceedings of the National Academy of Sciences, the researchers, from MIT’s Koch Institute of Integrative Cancer Research, present a novel approach to developing a dengue therapy using mutated antibodies.

According to a study by the International Research Consortium on Dengue Risk Assessment, Management and Surveillance, up to 390 million people are infected with the dengue virus each year. For most people the mosquito-borne virus causes flulike symptoms, including fever, headache and joint pain. But for some, particularly children, the virus can develop into the far more serious dengue hemorrhagic fever, causing severe blood loss and even death.

Despite the threat posed by the disease, developing a vaccine against dengue has so far proved challenging, according to Ram Sasisekharan, the Alfred H. Caspary Professor of Biological Engineering at MIT. That’s because dengue is not one virus but four different viruses, or serotypes, each of which must be neutralized by the vaccine.

Protecting people from only one or some of the four viruses could cause them to develop the more severe form of dengue if they later become infected with one of the other serotypes, in a process known as antibody-dependent enhancement, Sasisekharan says. “That was the motivation for carrying out our study, to generate a fully neutralizing antibody that works for all four serotypes.”

Pushing the envelope

Efforts to develop a therapeutic antibody for dengue are focused on a part of the virus called the envelope protein. “This is a very critical protein that allows the virus to latch on to the appropriate receptor within the host, to infect them, replicate and spread,” Sasisekharan says.

The envelope protein contains two regions of interest, known as the loop and the “A” strand. Research teams have previously attempted to engineer an antibody that targets the loop region of the virus protein, as this is known to be able to attack all four serotypes if targeted in the right way.

However, the antibodies that target the loop region tend to have low potency, meaning they are unable to completely neutralize the virus. This increases the risk of more severe secondary dengue infection.

So a team led by Sasisekharan decided instead to look for antibodies that target the “A” strand region of the protein. Such antibodies tend to have much higher potency, but they are unable to neutralize all four serotypes.

450-fold increase

The researchers chose as their model an antibody known as 4E11, which has been shown in tests to neutralize dengue 1, 2 and 3, but not dengue 4. “We wanted to see if we could get good neutralizing activity to dengue 4, and also tweak the antibody to increase the potency associated with the other subtypes,” Sasisekharan says.

The authors mined existing antibody-antigen complexes to analyze the physical and chemical features that play an important role in their interaction, such as hydrogen bonding and ionic attraction. Taking a statistical approach, they then ranked these features in terms of their importance to each of the antibody-antigen interactions.

This significantly narrowed the number of possible changes, or mutations, the researchers needed to make antibody 4E11 in order to improve its ability to neutralize all four viruses, in particular dengue 4. “So rather than random screening, we used a statistically driven approach so we knew the regions to focus on, and what things we had to change,” Sasisekharan says.

As a result, the researchers came up with 87 possible mutations, which they were able to reduce to just 10 changes after further investigation.

When they tested their mutated antibody on samples of the four dengue serotypes in the laboratory, they found it had a 450-fold increase in binding to dengue 4, a 20-fold increase in binding for dengue 2, and lesser improvements in binding for dengue 1 and 3, Sasisekharan says.

The researchers have developed a novel computational method for predicting protein-protein interaction that captures the essential chemical and physical features of interacting surfaces, says Subhash Vasudevan, an associate professor in the Emerging Infectious Diseases Program at the Duke-NUS Graduate Medical School in Singapore.

“By learning and validating data from numerous three-dimensional structures of interacting antibody and protein complexes, the researchers gained valuable insights that enabled them to redesign a dengue virus envelope antibody to improve its binding by an astounding 450-fold,” Vasudevan says.

“The cross-reactive and pan-dengue neutralizing antibody was protective against all four serotypes in cell culture and in an animal model of infection,” he adds.

The MIT researchers are now preparing for potential preclinical trials, and hope to be ready to test the antibody on humans within the next two to three years. In the meantime, they are also investigating other targets for their immunotherapy approach, including the influenza virus.

This work was funded by the National Institutes of Health and the National Research Foundation Singapore through the Singapore-MIT Alliance for Research and Technology’s Infectious Diseases Research Program.

Sarah McDonnell | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/2013/research-advances-therapy-to-protect-against-dengue-0408.html

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>