Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find how bacteria in cows’ milk may cause Crohn’s Disease

11.12.2007
Scientists at the University of Liverpool have found how a bacterium, known to cause illness in cattle, may cause Crohn’s disease in humans.

Crohn’s is a condition that affects one in 800 people in the UK and causes chronic intestinal inflammation, leading to pain, bleeding and diarrhoea.

The team found that a bacterium called Mycobacterium paratuberculosis releases a molecule that prevents a type of white blood cell from killing E.coli bacteria found in the body. E.coli is known to be present within Crohn’s disease tissue in increased numbers.

It is thought that the Mycobacteria make their way into the body’s system via cows’ milk and other dairy products. In cattle it can cause an illness called Johne's disease - a wasting, diarrhoeal condition. Until now, however, it has been unclear how this bacterium could trigger intestinal inflammation in humans.

Professor Jon Rhodes, from the University’s School of Clinical Sciences, explains: “Mycobacterium paratuberculosis has been found within Crohn’s disease tissue but there has been much controversy concerning its role in the disease. We have now shown that these Mycobacteria release a complex molecule containing a sugar, called mannose. This molecule prevents a type of white blood cells, called macrophages, from killing internalised E.Coli.”

Scientists have previously shown that people with Crohn’s disease have increased numbers of a ‘sticky’ type of E.coli and weakened ability to fight off intestinal bacteria. The suppressive effect of the Mycobacterial molecule on this type of white blood cell suggests it is a likely mechanism for weakening the body’s defence against the bacteria.

Professor Rhodes added: "We also found that this bacterium is a likely trigger for a circulating antibody protein (ASCA) that is found in about two thirds of patients with Crohn's disease, suggesting that these people may have been infected by the Mycobacterium."

The team is beginning clinical trials to assess whether an antibiotic combination can be used to target the bacteria contained in white blood cells as a possible treatment for Crohn’s disease.

The research was funded by Core and the Medical Research Council and is published in Gastroenterology.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>