Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future of Radiotherapy in the UK

07.12.2007
The University of Surrey welcomes the Government’s announcement today (3 December) that improved radiotherapy strategies are going to be at the forefront of government policy in the fight against cancer.

This announcement is extremely timely, but it is extremely sad that the UK currently has no plans for the newest type of radiotherapy which uses charged particles rather than X-rays. This exciting new generation of radiotherapy, which delivers more damage to the tumour and much less to the surrounding healthy tissue, will especially benefit children and tumours that are more difficult to treat with conventional (photon) radiotherapy. A report on particle therapy was submitted to HMG by the National Radiotherapy Advisory Group (NRAG) last year.

There are now over 60 particle therapy facilities in various stages of operation, development and procurement in the USA and the rest of Europe, but none are currently planned for the UK. The UK does have a low energy facility at Clatterbridge which has been spectacularly successful in treating tumours of the surface of the eye but is too low energy to treat more common deeper-seated tumours.

The UK is in an excellent position to take advantage of particle therapy as there are excellent networks both on the clinical side (ACORRN) and between clinicians scientists and engineers (EPSRC Research Network on Biomedical Applications of High Energy Ion Beams). Moreover , the research infrastructure to take this research from bench to bedside is already in place, via the Wolfson Nanobeam Project at the University of Surrey and recent funding through the Research Councils Basic Technology programme (CONFORM and LIBRA) for the next generation of particle therapy machines , which aim to develop the next generation of ion sources for particle therapy.

In 2009 the UK will celebrate Rutherford’s experiments which helped to understand the atom and the role of the proton yet the UK is the only nation in Western Europe without plans to use this discovery, and protons for a charged particle facility.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>