Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy breakthrough offers hope to patients with inherited high cholesterol levels

14.05.2002


New research published in BMC Molecular Biology explains how a new technique for introducing genes into mammalian cells using the virus responsible for warts could be a major step forward in developing gene therapy treatments for people with familial hypercholesterolemia (FH), a genetic disease that affects around 12 million people worldwide.



People with FH have a genetic defect that prevents their liver cells from absorbing chlolesterol in the form of low density lipoprotein (LDL). This leads to high levels of cholesterol in the bloodstream increasing the risk of heart disease. It is estimated that about half of men and a third of women with FH suffer a heart attack by the age of 60.

FH occurs as a result of a single defective gene that codes for a LDL receptor in the liver. Many single gene defects like the one that causes FH are candidates for gene therapy, a medical treatment used to repair or replace faulty genes (this is because it is much easier to repair one gene that causes a disease than it is to tackle other genetic diseases that involves several faulty genes).


Since the first successful attempts at gene therapy in 1990 there has been an intense research effort to develop ways of curing genetic diseases. By 1996 over 3000 patients had been treated using gene therapy, but most of these cases were unsuccessful. There are major obstacles to overcome to increase the success of gene therapy trials. Firstly, ways of getting multiple copies of healthy genes into enough cells to reverse the underlying disease need to be established. Secondly, it is important that the expression of healthy genes is sustained and finally any virus used to repair or replace faulty genes must not be attacked by the immune system of the patient receiving gene therapy.

The research published in BMC Molecular Biology showed that the virus responsible for warts (bovine papilloma virus) could be used to restore the function of cells with defective LDL receptors. Furthermore, it showed that the cells continued to function normally throughout the 32 week observation period.

The next step in this exciting research is to test the ability of the virus to repair faulty genes in animals with defective LDL receptor genes to establish whether an animal`s immune system will react to the papilloma virus. The researchers remain optimistic that this technique will save lives given that preliminary studies have shown that the human form of the virus is unlikely to attacked by the immune system.

Gordon Fletcher | alphagalileo
Further information:
http://www.biomedcentral.com/1471-2199/3/5/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>