Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy breakthrough offers hope to patients with inherited high cholesterol levels

14.05.2002


New research published in BMC Molecular Biology explains how a new technique for introducing genes into mammalian cells using the virus responsible for warts could be a major step forward in developing gene therapy treatments for people with familial hypercholesterolemia (FH), a genetic disease that affects around 12 million people worldwide.



People with FH have a genetic defect that prevents their liver cells from absorbing chlolesterol in the form of low density lipoprotein (LDL). This leads to high levels of cholesterol in the bloodstream increasing the risk of heart disease. It is estimated that about half of men and a third of women with FH suffer a heart attack by the age of 60.

FH occurs as a result of a single defective gene that codes for a LDL receptor in the liver. Many single gene defects like the one that causes FH are candidates for gene therapy, a medical treatment used to repair or replace faulty genes (this is because it is much easier to repair one gene that causes a disease than it is to tackle other genetic diseases that involves several faulty genes).


Since the first successful attempts at gene therapy in 1990 there has been an intense research effort to develop ways of curing genetic diseases. By 1996 over 3000 patients had been treated using gene therapy, but most of these cases were unsuccessful. There are major obstacles to overcome to increase the success of gene therapy trials. Firstly, ways of getting multiple copies of healthy genes into enough cells to reverse the underlying disease need to be established. Secondly, it is important that the expression of healthy genes is sustained and finally any virus used to repair or replace faulty genes must not be attacked by the immune system of the patient receiving gene therapy.

The research published in BMC Molecular Biology showed that the virus responsible for warts (bovine papilloma virus) could be used to restore the function of cells with defective LDL receptors. Furthermore, it showed that the cells continued to function normally throughout the 32 week observation period.

The next step in this exciting research is to test the ability of the virus to repair faulty genes in animals with defective LDL receptor genes to establish whether an animal`s immune system will react to the papilloma virus. The researchers remain optimistic that this technique will save lives given that preliminary studies have shown that the human form of the virus is unlikely to attacked by the immune system.

Gordon Fletcher | alphagalileo
Further information:
http://www.biomedcentral.com/1471-2199/3/5/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>