Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast way of spotting multi-drug resistant bacteria could help stop outbreaks in hospitals

28.11.2007
A type of bacterium widely found on our skin and in the environment has now become a major threat in hospitals where it can cause serious infections, such as pneumonia in severely ill patients. Like the well known bacterium MRSA (methicillin resistant Staphylococcus aureus) the new types of Acinetobacter baumannii are resistant to nearly all antibiotics, so doctors have very few treatments available, and three resistant strains are currently circulating in the UK.

A molecular method designed by the Health Protection Agency has been successfully implemented by medical researchers at the Royal Free Hospital, part of the Royal Free Hampstead NHS Trust, as a quick and accurate means of identifying which strain of the bacterium is infecting a patient, scientists heard today (Wednesday 28 November 2007) at the Federation of Infection Societies Conference 2007 at the University of Cardiff, UK, which runs from 28-30 November 2007.

“Some of these new strains of Acinetobacter baumannii, known as epidemic clones, can spread rapidly and widely between patients and have the potential to cause outbreaks”, says Kerry Williams of the Royal Free Hospital. “We currently encounter two of them at our hospital, so we need a reliable and rapid means of identifying and discriminating between the different clones. We can now get a result from a patient’s sample in just four hours. The test also allows us to predict how likely we are to be facing an outbreak”.

The drug resistant strains of the bacteria are especially dangerous in intensive care units where, as well as causing pneumonia, they can infect wounds or cause urinary tract infections such as cystitis.

“Like MRSA, Acinetobacter baumannii can be found on the skin without actually causing an infection, this is known as colonisation. The new test is important because it means we can rapidly identify patients who are colonised with drug resistant strains of the bacteria so that special infection control measures can be put in place. The patient can quickly be isolated if necessary”, says Miss Williams. “This reduces the risk of transmission to other patients and the possibility of an outbreak occurring. The ability to distinguish between the clones circulating is also important because it allows us to monitor transmission in our hospital”.

Currently all the Royal Free Hospital strains of bacteria are sent to a reference laboratory for typing by a method called pulsed field gel electrophoresis. The new test, called multiplex-PCR, gives results comparable to the ones produced by the reference laboratory.

The multiplex-PCR, based on identifying unique gene sequences in the bacteria, has the potential to be developed as a rapid screening tool for intensive care units in other parts of the country. It should eventually lead to better patient management with faster and more appropriate treatments for individuals and prompt control of infections to reduce the risk of transmission to other patients.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk
http://www.fis2007.org.uk

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>