Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For the first time, UAB researchers have cured mice with diabetes type 1


A team of researchers from the Universitat Autònoma de Barcelona (UAB) has cured mice with diabetes type 1 for the first time. In the experiment, the diabetic mice completely recovered from the disease after having suffered excesses of glucose in their blood. Although the mice used were transgenic, the researchers are sure that there will soon be a genic therapy based on this discovery that will cure non-transgenic mice with diabetes type 1, and which, within a few years, will also be able to cure people. The study was published in last edition of Journal of Clinical Investigation.

A research team led by Fatima Bosch, professor in the Department of Biochemistry and Molecular Biology at the UAB, has studied the effects of protein IGF-I on mice with diabetes type 1, i.e. the type of diabetes produced by a decrease in the number of beta cells in the pancreas, the ones which produce insulin. In order to study this effect, the researchers used mice that were genetically modified so that the beta cells in their pancreases would produce protein IGF-I, and have compared the development of diabetes type 1 in this type of mice to the evolution of the disease in control mice (without genetic modifications).

The results of the experiments clearly show that in the transgenic mice with the gene that codifies for protein IGF-I activated in beta cells, the induction of experimental diabetes leads to the replication of these cells, their programmed cellular death is counteracted (apoptosis) and the resident mother cells in the conducts of the pancreas are induced to develop insulin-producing beta cells. All these effects lead to the mice completely recovering from the disease, re-establishing absolutely normal levels of glucose in their blood.

The team of UAB scientists chose to experiment with this protein because it has provided excellent results in vitro – it causes the replication of beta cells and counteracts apoptosis – and moreover, mice in which there is destruction of the gene that codifies the IGF-I receptor have very small pancreatic islets (the conglomerates of the beta cells in the pancreas).

This is the first time in which it has been demonstrated that a curative therapy for diabetes is possible, and could imply important advantages over other therapies that are currently being investigated, such as the transplant of islets or beta cells cultivated in vitro. Moreover, in the therapy developed by Doctor Fatima Bosch’s team, the effect of IGF-I does not occur until the animal suffers the destruction of its beta cells. Therefore, non-diabetic transgenic animals are perfectly normal, without any alterations or secondary effects.

The researchers are sure that the next stage of the research programme, the curing of normal (i.e. non-transgenic) mice with diabetes 1 by mean of genic therapy, will probably take place in the near future. Once the scientists have successfully carried out tests with experimental animals, they will be able to consider applying the technique to humans, although this will not be for some time. In order to cure diabetes type 1, viral vectors (innocuous viruses) carrying the gene that codifies for IGF-I will have to be injected into the pancreas.

The research, published in last edition of Journal of Clinical Investigation, has involved the participation of researchers from the Department of Biochemistry and Molecular Biology at the UAB, specifically the Unit from this department based in the Faculty of Veterinary Science, along with members of the Centre for Animal Biotechnology and Genetic Therapy (CBATEG) at the Biocampus research complex of the Universitat Autònoma de Barcelona. The research was financed by the Fondo de Investigación Sanitaria (Health Research Fund), the Plan Nacional de I+D (National R&D Plan) of the Spanish Ministry for Education and Culture, the TV3 Marató Foundation, the Generalitat de Catalunya’s General Research Management and the European Community Training and Mobility Program.

Octavi López Coronado | alphagalileo
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>