Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key of epilepsy can be in LGI1/Epitempina gene

07.05.2002


Researchers of the Hospital of San Sebastian and the Biomedicine Institute of Valencia have discovered the genetic basis of hereditary epilepsy. The work leaded by the researchers Adolfo Lopez de Munain and Jordi Perez Tur has analysed the effect of the gene called LGI1/Epitempina.



Temporal lateral epilepsy is the type of epilepsy that affects the side of the brain. The main characteristic of this type of epilepsy is that patients hear some noises before they lose consciousness. Many researcher have located in the 10q24 chromosome the gene related to this disorder. Now, after an immuno-historic research of two families of three generations, they have proved that LGI1 protein has a significant effect in this type of hereditary epilepsy. Moreover, this gene affects the synapse, that is, the connection between neurons. This fact contrasts with other genes responsible of some other hereditary epilepsies which usually affect nerve impulses, because they are receptors of neurotransmitters or ionic canals.

In order to understand the meaning of this discovery, it is necessary to know that epilepsy is not a single disorder, but a set of disorders. This set of disorders causes seizures by common mechanisms. The way to fight against epilepsy is to understand those mechanisms and to use medicines to stop them. The gene called LGI1/Epitempina uses a mechanism which was unknown until now to cause epileptic seizures. Knowing this mechanism is a way to cure other types of epilepsy apart from temporal lateral epilepsy. It must be considered that 80% of epilepsy cases can be treated, but for the rest 20 % there is no adequate medicine. Therefore, any discovery that allows to understand the functioning of epilepsy gives the opportunity to develop new medicines and cures.


Epilepsy is the most common disorder of neurological origin; in fact, 1 % of the population suffers this disorder. A research carried out some years ago stated that 40% of epilepsy cases are hereditary. Nowadays it is believed that this percentage is higher, as in most of the cases epilepsy has genetic components and that makes it hereditary. However, it is not just the case of epilepsy, usually all diseases have a genetic basis. The fact to have this genetic basis does not mean that people with this hobbled gene will necessarily develop the disorder, but that they have more possibilities to develop it.

During the 7 years in which has been carried out the research, scientists of the Basque Country, Italy, Greece, Germany and United Kingdom have participated. The result of the research has been published in the well-known magazine Human Molecular Genetics, in the issue of May, but authors have stated that there is still a long way to go until knowing the mechanism of LGI1/Epitempina.

Garazi Andonegi | alphagalileo

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>