Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key of epilepsy can be in LGI1/Epitempina gene

07.05.2002


Researchers of the Hospital of San Sebastian and the Biomedicine Institute of Valencia have discovered the genetic basis of hereditary epilepsy. The work leaded by the researchers Adolfo Lopez de Munain and Jordi Perez Tur has analysed the effect of the gene called LGI1/Epitempina.



Temporal lateral epilepsy is the type of epilepsy that affects the side of the brain. The main characteristic of this type of epilepsy is that patients hear some noises before they lose consciousness. Many researcher have located in the 10q24 chromosome the gene related to this disorder. Now, after an immuno-historic research of two families of three generations, they have proved that LGI1 protein has a significant effect in this type of hereditary epilepsy. Moreover, this gene affects the synapse, that is, the connection between neurons. This fact contrasts with other genes responsible of some other hereditary epilepsies which usually affect nerve impulses, because they are receptors of neurotransmitters or ionic canals.

In order to understand the meaning of this discovery, it is necessary to know that epilepsy is not a single disorder, but a set of disorders. This set of disorders causes seizures by common mechanisms. The way to fight against epilepsy is to understand those mechanisms and to use medicines to stop them. The gene called LGI1/Epitempina uses a mechanism which was unknown until now to cause epileptic seizures. Knowing this mechanism is a way to cure other types of epilepsy apart from temporal lateral epilepsy. It must be considered that 80% of epilepsy cases can be treated, but for the rest 20 % there is no adequate medicine. Therefore, any discovery that allows to understand the functioning of epilepsy gives the opportunity to develop new medicines and cures.


Epilepsy is the most common disorder of neurological origin; in fact, 1 % of the population suffers this disorder. A research carried out some years ago stated that 40% of epilepsy cases are hereditary. Nowadays it is believed that this percentage is higher, as in most of the cases epilepsy has genetic components and that makes it hereditary. However, it is not just the case of epilepsy, usually all diseases have a genetic basis. The fact to have this genetic basis does not mean that people with this hobbled gene will necessarily develop the disorder, but that they have more possibilities to develop it.

During the 7 years in which has been carried out the research, scientists of the Basque Country, Italy, Greece, Germany and United Kingdom have participated. The result of the research has been published in the well-known magazine Human Molecular Genetics, in the issue of May, but authors have stated that there is still a long way to go until knowing the mechanism of LGI1/Epitempina.

Garazi Andonegi | alphagalileo

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>