Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SARS: a model disease

22.11.2007
A new model to predict the spread of emerging diseases has been developed by researchers in the US, Italy, and France. The model, described in the online open access journal BMC Medicine, could give healthcare professionals advance warning of the path an emerging disease might take and so might improve emergency responses and control.

Severe acute respiratory syndrome (SARS) spread rapidly in 2002-2003, revealing just how vulnerable we might be to emerging diseases and how global transportation is critical to the spread of an epidemic.

Now, Vittoria Colizza and Alessandro Vespignani of Indiana University, Bloomington, USA and the Institute for Scientific Interchange Foundation, in Turin, Italy, and colleagues in France have developed a predictive model of the spread of emerging diseases based on actual travel and census data for more than three thousand urban areas in 220 countries. The model provides predictions of how likely an outbreak will be in each region and how widespread it might become. The research highlights just how the accuracy in predicting the spreading pattern of an epidemic can be related to clearly identifiable routes by which the disease could spread.

In order to assess the predictive power of their model, the researchers turned to the historical records of the global spread of the SARS virus. They evaluated the initial conditions before the disease had spread widely, based on the data for the arrival of the first patient who left mainland China for Hong Kong, and for the resulting outbreak there. They then simulated the likelihood that SARS would emerge in specific countries thereafter, as brought by infectious travelers. The simulated results fit very accurately with the actual pattern of the spread of SARS in 2002. Analysis of the results also identified possible paths of the virus' spread along the routes of commercial air travel, highlighting some preferred channels which may serve as epidemic pathways for the global spread of the disease.

"The presented computational approach shows that the integration of long-range mobility and demographic data provides epidemic models with a predictive power that can be consistently tested," the researchers explain. "This computational strategy can be therefore considered as a general tool in the analysis and forecast of the global spreading of emerging diseases."

BMC Medicine publishes original research articles, technical advances and study protocols in any area of medical science or clinical practice. BMC Medicine (ISSN 1741-7015) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, Scopus, CAS, Google Scholar and Thomson Scientific (ISI).

BioMed Central (http://www.biomedcentral.com) is a UK-based, independent online publishing house committed to providing open access to peer-reviewed biological and medical research. This commitment is based on the view that immediate free access to research and the ability to freely archive and reuse published information is essential to the rapid and efficient communication of science.

BioMed Central currently publishes over 180 journals across biology and medicine. In addition to open-access original research, BioMed Central also publishes reviews, commentaries and other non-original-research content. Depending on the policies of the individual journal, this content may be open access or provided only to subscribers.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcmed/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>