Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SARS: a model disease

A new model to predict the spread of emerging diseases has been developed by researchers in the US, Italy, and France. The model, described in the online open access journal BMC Medicine, could give healthcare professionals advance warning of the path an emerging disease might take and so might improve emergency responses and control.

Severe acute respiratory syndrome (SARS) spread rapidly in 2002-2003, revealing just how vulnerable we might be to emerging diseases and how global transportation is critical to the spread of an epidemic.

Now, Vittoria Colizza and Alessandro Vespignani of Indiana University, Bloomington, USA and the Institute for Scientific Interchange Foundation, in Turin, Italy, and colleagues in France have developed a predictive model of the spread of emerging diseases based on actual travel and census data for more than three thousand urban areas in 220 countries. The model provides predictions of how likely an outbreak will be in each region and how widespread it might become. The research highlights just how the accuracy in predicting the spreading pattern of an epidemic can be related to clearly identifiable routes by which the disease could spread.

In order to assess the predictive power of their model, the researchers turned to the historical records of the global spread of the SARS virus. They evaluated the initial conditions before the disease had spread widely, based on the data for the arrival of the first patient who left mainland China for Hong Kong, and for the resulting outbreak there. They then simulated the likelihood that SARS would emerge in specific countries thereafter, as brought by infectious travelers. The simulated results fit very accurately with the actual pattern of the spread of SARS in 2002. Analysis of the results also identified possible paths of the virus' spread along the routes of commercial air travel, highlighting some preferred channels which may serve as epidemic pathways for the global spread of the disease.

"The presented computational approach shows that the integration of long-range mobility and demographic data provides epidemic models with a predictive power that can be consistently tested," the researchers explain. "This computational strategy can be therefore considered as a general tool in the analysis and forecast of the global spreading of emerging diseases."

BMC Medicine publishes original research articles, technical advances and study protocols in any area of medical science or clinical practice. BMC Medicine (ISSN 1741-7015) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, Scopus, CAS, Google Scholar and Thomson Scientific (ISI).

BioMed Central ( is a UK-based, independent online publishing house committed to providing open access to peer-reviewed biological and medical research. This commitment is based on the view that immediate free access to research and the ability to freely archive and reuse published information is essential to the rapid and efficient communication of science.

BioMed Central currently publishes over 180 journals across biology and medicine. In addition to open-access original research, BioMed Central also publishes reviews, commentaries and other non-original-research content. Depending on the policies of the individual journal, this content may be open access or provided only to subscribers.

Charlotte Webber | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>