Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a Mechanism to Explain Biological “Cross-Talk” Between 24-Hour Body Cycles and Metabolism

20.11.2007
Research Points to New Pathways for Fighting Diabetes

It’s well known that the body’s energy levels cycle on a 24-hour, or circadian, schedule, and that this metabolic process is fueled by oxygen. Now, researchers at the University of Pennsylvania School of Medicine have found that a protein called Rev-erb coordinates the daily cycles of oxygen-carrying heme molecules to maintain the body’s correct metabolism.

The research appears online this week in Science Express in advance of print publication in Science.

Many studies, including this one, point to a link between the human internal clock and such metabolic disorders as obesity and diabetes. Proteins such as Rev-erb are the gears of the clock and understanding their role is important for fighting these diseases.

“This is the next chapter on Rev-erb, a member of a family of cell-nucleus proteins that includes receptors for anti-diabetic drugs,” explains senior author Mitchell A. Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn. About two years ago Lazar’s group discovered that Rev-erb was a critical component of the circadian clock. In this paper, they found that the activity of Rev-erb is controlled by heme.

Heme represents the body's most important way of transporting and using oxygen, which would simply bubble away in the body without being bound to heme. “In a molecular baton hand-off, oxygen is transferred from heme in the bloodstream to the heme molecules found inside a cell,” says Lazar, of how oxygen reaches cells to run their metabolic needs. One of the most important roles of heme inside cells is to facilitate the use of oxygen to generate energy in the process known as cellular respiration.

The findings further tie together the 24-hour cycle of the body with metabolic function. “Circadian rhythms are our sleep-wake cycle and metabolism is how we process food, so it makes sense that there would be biological cross-talk between the body’s 24-hour rhythm and metabolic function,” says Lazar. Indeed, scientists already recognize that getting too much or too little sleep increases the risk of diabetes. The newly discovered circadian/metabolic link could be the focus of a new generation of diabetes treatments.

The Penn group worked with scientists at GlaxoSmithKline, who demonstrated that the Rev-erb protein can physically bind to heme in the test tube. The Penn scientists then found that heme, by regulating the activity of Rev-erb, reduces the amount of glucose produced by liver cells.

“What’s exciting about this is that it puts heme in a central role in the metabolic regulation of the cell,” says Lazar. “Not only is it a key component in making energy, but also in the pathway for turning off glucose production.” Excessive glucose production by the liver is a major cause of high blood sugar in diabetes.

This work was funded by the National Institute of Diabetes and Digestive and Kidney Disease. Co-authors are first author Lei Yin, Joshua C. Curtin, Mohammed Qatananai, and Nava R. Szwergold, all from Penn and Robert A. Reid, Gregory M. Waitt, Derek J. Parks, Kenneth H. Pearce, and G. Bruce Wisely, from GlaxoSmithKline, Research Triangle Park, NC.

Karen Kreeger | EurekAlert!
Further information:
http://www.pennhealth.com/news

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>