Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a Mechanism to Explain Biological “Cross-Talk” Between 24-Hour Body Cycles and Metabolism

20.11.2007
Research Points to New Pathways for Fighting Diabetes

It’s well known that the body’s energy levels cycle on a 24-hour, or circadian, schedule, and that this metabolic process is fueled by oxygen. Now, researchers at the University of Pennsylvania School of Medicine have found that a protein called Rev-erb coordinates the daily cycles of oxygen-carrying heme molecules to maintain the body’s correct metabolism.

The research appears online this week in Science Express in advance of print publication in Science.

Many studies, including this one, point to a link between the human internal clock and such metabolic disorders as obesity and diabetes. Proteins such as Rev-erb are the gears of the clock and understanding their role is important for fighting these diseases.

“This is the next chapter on Rev-erb, a member of a family of cell-nucleus proteins that includes receptors for anti-diabetic drugs,” explains senior author Mitchell A. Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn. About two years ago Lazar’s group discovered that Rev-erb was a critical component of the circadian clock. In this paper, they found that the activity of Rev-erb is controlled by heme.

Heme represents the body's most important way of transporting and using oxygen, which would simply bubble away in the body without being bound to heme. “In a molecular baton hand-off, oxygen is transferred from heme in the bloodstream to the heme molecules found inside a cell,” says Lazar, of how oxygen reaches cells to run their metabolic needs. One of the most important roles of heme inside cells is to facilitate the use of oxygen to generate energy in the process known as cellular respiration.

The findings further tie together the 24-hour cycle of the body with metabolic function. “Circadian rhythms are our sleep-wake cycle and metabolism is how we process food, so it makes sense that there would be biological cross-talk between the body’s 24-hour rhythm and metabolic function,” says Lazar. Indeed, scientists already recognize that getting too much or too little sleep increases the risk of diabetes. The newly discovered circadian/metabolic link could be the focus of a new generation of diabetes treatments.

The Penn group worked with scientists at GlaxoSmithKline, who demonstrated that the Rev-erb protein can physically bind to heme in the test tube. The Penn scientists then found that heme, by regulating the activity of Rev-erb, reduces the amount of glucose produced by liver cells.

“What’s exciting about this is that it puts heme in a central role in the metabolic regulation of the cell,” says Lazar. “Not only is it a key component in making energy, but also in the pathway for turning off glucose production.” Excessive glucose production by the liver is a major cause of high blood sugar in diabetes.

This work was funded by the National Institute of Diabetes and Digestive and Kidney Disease. Co-authors are first author Lei Yin, Joshua C. Curtin, Mohammed Qatananai, and Nava R. Szwergold, all from Penn and Robert A. Reid, Gregory M. Waitt, Derek J. Parks, Kenneth H. Pearce, and G. Bruce Wisely, from GlaxoSmithKline, Research Triangle Park, NC.

Karen Kreeger | EurekAlert!
Further information:
http://www.pennhealth.com/news

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>