Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the test - tube conception dangerous?

20.11.2007
The number of “infants from a test-tube” is growing year by year, and in highly developed countries it will soon make 1% to 3% of all new-borns.

But how safe are the auxiliary reproductive technologies (ART)? Having summarized the data accumulated by the world science, specialists of the Research Institute of Medical Genetics (Tomsk Scientific Center, Siberian Branch, Russian Academy of Medical Sciences) tried to look into only one aspect of the ART safety – risk of genomic imprinting diseases.

What kind of diseases are they? Normal mammal development requires that maternal and paternal gene sets differed functionally. In certain genes, only the maternal copy should work. And in others – only the paternal copy should. The mechanism regulating functional differences of parental genomes is called genomic imprinting. This is a complicated and multi-step process, which starts in the parental gametal cells, where special enzymes mark and disconnect the required genes (a human being has about 70 of them), and continues after impregnation. Heavy pathologies can be caused by failure of such marking at some stage, and several genomic imprinting diseases are known with human beings.

Genomic imprinting reacts to external factors, and the researchers expected that the auxiliary reproductive technologies could influence it. The first example of such influence was discovered in experiments on animals’ artificial impregnation. The “large posterity syndrome” sometimes develops with big horned cattle and sheep after embryo cultivation, the posterity weight often by twice exceeding the norm. Another important indication is increased fetus mortality in the course of pregnancy and in labour, at that the pregnancy is long and the delivery is difficult. The deceased fetus and new-borns have internal pathologies. The “large posterity syndrome” caused by derangements of genomic imprinting is very similar on the surface to the Wideman-Beckwith human syndrome arising for the same reason. In case of the Wideman-Beckwith syndrome, infants are born very big and with multiple pathologies. The syndrome frequency is normally one case per 12 to 15 thousand of new-borns, but it is several times higher with the children born with the help of the ART.

The researchers suggest several hypotheses explaining why genomic imprinting diseases occur more often in case of the ART than in case of traditional conception. Firstly, the process may be influenced by methodical peculiarities of artificial impregnation. In case of extracorporal fertilization, women are injected hormones to stimulate the ovulation. Possibly, gonadotropins accelerate maturation of ovums, which have not finished yet the genomic imprinting process. In some cases ovums have to be cultivated in nutrient medium prior to fertilization, and after fertilization embryos are bred on it before transplanting in the maternal organism. The nutrient medium composition and the lack of signals coming from the maternal organism in a normal case can also impact genomic imprinting, which takes place both in maturing ovums and in the developing embryo. It is not improbable that the genome marking can be influenced by cryopreservation of gametal cells and embryos, which is often practiced.

Secondly, the ART enables the events that would have never happen in a natural way. Thus, “anomalous” ovums can mature in case of hormone stimulation, such ovums would have scarcely mature during a natural cycle. Spermatozoa also can have imprinting defects. Normally, their fertility is low but they can be used for artificial impregnation, and then trouble is inevitable. Finally, artificial impregnation makes it possible that ill children are born with infertile married couples who have predisposition to genomic imprinting diseases.

Now, there is no unanimous opinion among the researchers as regards to the ART and genomic imprinting diseases. Some assume that the birth “the test-tube” children is an extremely rare event and it cannot be the reason for rejection of artificial impregnation. Their opponents believe that the genomic imprinting abnormalities cases known to us make only the visible part of the iceberg. We do not know too many things, and the risk of giving birth to infants with imprinting defects is although little, but important. Therefore, it is necessary to investigate the problem and to make extracorporal fertilization safe in every respect.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

nachricht Fast food makes the immune system more aggressive in the long term
12.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>