Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers investigate ways to detect lupus-associated kidney disease

15.11.2007
High urinary levels of certain molecules might have the potential to serve as biomarkers for a potentially life-shortening kidney ailment caused by the autoimmune disease lupus, UT Southwestern Medical Center researchers have found.

“Our studies suggest a quartet of molecules may have potential diagnostic significance,” said Dr. Chandra Mohan, professor of internal medicine and senior author of a study available online at the Journal of Immunology. “Given that early intervention in lupus nephritis is associated with better treatment outcome, it is imperative that disease activity in the kidney be diagnosed as early as possible.”

Lupus is a chronic autoimmune disease in which the immune system attacks the body’s cells and tissues. In a normal immune system, foreign intruders are recognized by special immune cells that produce antibodies. In patients with lupus, however, the antibodies created start to attack the body itself. When the antibodies attack the kidneys, nephritis occurs, often shortening a patient’s life expectancy.

Dr. Mohan and colleagues screened urine from mice with lupus nephritis for the presence of four compounds – VCAM-1, P-selection, TNFR-1 and CXCL 16. Previous research had suggested that these molecules are elevated in animal models of antibody-mediated nephritis. Dr. Mohan and his research team determined that the mice harbored increased levels of all four molecules in the urine, particularly at the peak of their lupus-associated kidney disease.

The most reliable method now available for monitoring renal disease in lupus patients is to measure the level of protein excreted in urine. As part of their study, the researchers also tested the urine of lupus patients and found that they not only had high protein levels in their urine, but also elevated levels of all four compounds.

“It would be very beneficial to detect the presence of nephritis early in order to administer therapies to stop the immune system from destroying the kidney,” said Dr. Mohan. “There is an urgent need for a biomarker that one could potentially use to predict the onset of nephritis. That is what we’re trying to discover with this research.”

Dr. Mohan said further studies are in progress to ascertain if checking these molecule levels might be more effective than monitoring protein levels to predict kidney disease in lupus patients.

“The ability to detect these molecules in urine could potentially have tremendous impact on clinical diagnostics. Not only is urine a convenient body fluid to procure; in some clinical settings it may be the only fluid available,” he said.

Some of the compounds might play a critical role in deciphering potential drug targets for therapeutic intervention. Although more research is needed, blocking one or more of these molecules might offer relief to patients suffering from lupus nephritis, Dr. Mohan said.

In humans, lupus can cause life-threatening damage not only to the kidneys, but also to the lungs, heart, central nervous system, joints, blood vessels and skin. It can be associated with severe fatigue, joint pain, skin rashes, hair loss and neurological problems. Although treatable symptomatically, there is currently no cure for the disease, which affects up to 1 million people in the U.S.

Erin Prather Stafford | EurekAlert!
Further information:
http://www.utsouthwestern.edu/receivenews
http://www.utsouthwestern.edu/utsw/cda/dept353744/files/422561.html

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>