Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå scientist publishes new findings about origin of plague bacterium

29.04.2002


A team including researchers at the Total Defense Research Institute, NBC Defense, in Umeå, Sweden, and the Department of Molecular Biology, Umeå University, are publishing in this week’s issue of Science new findings that show that the protein Ymt is of crucial importance for the capacity of the plague bacterium to survive and spread the plague via flea vectors. Professor Åke Forsberg and visiting researcher Dr. Peter Cherepanov are studying the properties that enable the plague bacterium Yersinia pestis to cause life-threatening infections in animals and humans. Increased knowledge of the mechanisms that Y. pestis exploits to conquer the body’s immune defense can make it possible to develop new methods of treatment for serious infectious diseases.

Historically, the plague is one of our most feared infectious diseases. During the most wide-spread epidemic in the middle ages, also known as the Black Death, more than 25% of the European population died. Today the disease is not very common, with some 2,000 cases per year. The plague occurs primarily in Africa and Asia, but there are also a few cases in North America every year.

The bacteria are normally spread by fleas, first of all to rodents. Humans can also be infected by fleas. When the disease reaches the lungs of a human, the infection can be spread through the air to other people. The onset of the disease is rapid, with a high temperature and a headache. There is often an enlargement of the lymph glands located near the back of the jaw, which explains why it is also called the bubonic plague. Untreated, the infection quickly reaches the blood, leading to general blood poisoning. Mortality for untreated bubonic plague is over 50%. If the infection is spread by the air to the lungs, the course of the disease is even more rapid, and mortality for untreated lung plague is virtually 100%. The high rate of mortality, together with the rapid progression of the disease, places plague bacteria among those considered for use as a biological weapon.



Y. pestis is very closely related to another bacterium called Y. pseudotuberculosis. The plague bacterium evolved from Y. pseudotuberculosis as recently as 1,500 to 2,000 years ago. Y. pseudotuberculosis leads to a relatively mild stomach infection in humans.

The key to the capacity of the plague bacterium to cause fatal infections in humans lies in the differences between the two species of bacteria. The plague bacterium has two movable genetic elements, plasmids, that Y. pseudotuberculosis lacks. On one of these plasmids the research team has identified a gene that codes for a previously described “mouse toxin” that is seen as a major part of the explanation for the high potency of the plague bacterium in causing disease.

The researchers have now shown that the gene, Ymt, is not at all involved in the infection of animals but instead is absolutely crucial to the ability of the bacterium to survive in fleas and thereby to spread the disease further. The ability to spread the disease via fleas represents a decisive step in the development of the plague bacterium. Thus, this ability arose in connection with the acquisition of the plasmid that hosts the Ymt gene.

The Umeå scientists arrived at these findings in collaboration with researchers from the Rocky Mountain Laboratories, NIH, Hamilton, and the University of Michigan Medical School, Ann Arbor, Michigan.

Ulrika Bergfors Kriström | alphagalileo

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>