Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå scientist publishes new findings about origin of plague bacterium

29.04.2002


A team including researchers at the Total Defense Research Institute, NBC Defense, in Umeå, Sweden, and the Department of Molecular Biology, Umeå University, are publishing in this week’s issue of Science new findings that show that the protein Ymt is of crucial importance for the capacity of the plague bacterium to survive and spread the plague via flea vectors. Professor Åke Forsberg and visiting researcher Dr. Peter Cherepanov are studying the properties that enable the plague bacterium Yersinia pestis to cause life-threatening infections in animals and humans. Increased knowledge of the mechanisms that Y. pestis exploits to conquer the body’s immune defense can make it possible to develop new methods of treatment for serious infectious diseases.

Historically, the plague is one of our most feared infectious diseases. During the most wide-spread epidemic in the middle ages, also known as the Black Death, more than 25% of the European population died. Today the disease is not very common, with some 2,000 cases per year. The plague occurs primarily in Africa and Asia, but there are also a few cases in North America every year.

The bacteria are normally spread by fleas, first of all to rodents. Humans can also be infected by fleas. When the disease reaches the lungs of a human, the infection can be spread through the air to other people. The onset of the disease is rapid, with a high temperature and a headache. There is often an enlargement of the lymph glands located near the back of the jaw, which explains why it is also called the bubonic plague. Untreated, the infection quickly reaches the blood, leading to general blood poisoning. Mortality for untreated bubonic plague is over 50%. If the infection is spread by the air to the lungs, the course of the disease is even more rapid, and mortality for untreated lung plague is virtually 100%. The high rate of mortality, together with the rapid progression of the disease, places plague bacteria among those considered for use as a biological weapon.



Y. pestis is very closely related to another bacterium called Y. pseudotuberculosis. The plague bacterium evolved from Y. pseudotuberculosis as recently as 1,500 to 2,000 years ago. Y. pseudotuberculosis leads to a relatively mild stomach infection in humans.

The key to the capacity of the plague bacterium to cause fatal infections in humans lies in the differences between the two species of bacteria. The plague bacterium has two movable genetic elements, plasmids, that Y. pseudotuberculosis lacks. On one of these plasmids the research team has identified a gene that codes for a previously described “mouse toxin” that is seen as a major part of the explanation for the high potency of the plague bacterium in causing disease.

The researchers have now shown that the gene, Ymt, is not at all involved in the infection of animals but instead is absolutely crucial to the ability of the bacterium to survive in fleas and thereby to spread the disease further. The ability to spread the disease via fleas represents a decisive step in the development of the plague bacterium. Thus, this ability arose in connection with the acquisition of the plasmid that hosts the Ymt gene.

The Umeå scientists arrived at these findings in collaboration with researchers from the Rocky Mountain Laboratories, NIH, Hamilton, and the University of Michigan Medical School, Ann Arbor, Michigan.

Ulrika Bergfors Kriström | alphagalileo

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>