Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå scientist publishes new findings about origin of plague bacterium

29.04.2002


A team including researchers at the Total Defense Research Institute, NBC Defense, in Umeå, Sweden, and the Department of Molecular Biology, Umeå University, are publishing in this week’s issue of Science new findings that show that the protein Ymt is of crucial importance for the capacity of the plague bacterium to survive and spread the plague via flea vectors. Professor Åke Forsberg and visiting researcher Dr. Peter Cherepanov are studying the properties that enable the plague bacterium Yersinia pestis to cause life-threatening infections in animals and humans. Increased knowledge of the mechanisms that Y. pestis exploits to conquer the body’s immune defense can make it possible to develop new methods of treatment for serious infectious diseases.

Historically, the plague is one of our most feared infectious diseases. During the most wide-spread epidemic in the middle ages, also known as the Black Death, more than 25% of the European population died. Today the disease is not very common, with some 2,000 cases per year. The plague occurs primarily in Africa and Asia, but there are also a few cases in North America every year.

The bacteria are normally spread by fleas, first of all to rodents. Humans can also be infected by fleas. When the disease reaches the lungs of a human, the infection can be spread through the air to other people. The onset of the disease is rapid, with a high temperature and a headache. There is often an enlargement of the lymph glands located near the back of the jaw, which explains why it is also called the bubonic plague. Untreated, the infection quickly reaches the blood, leading to general blood poisoning. Mortality for untreated bubonic plague is over 50%. If the infection is spread by the air to the lungs, the course of the disease is even more rapid, and mortality for untreated lung plague is virtually 100%. The high rate of mortality, together with the rapid progression of the disease, places plague bacteria among those considered for use as a biological weapon.



Y. pestis is very closely related to another bacterium called Y. pseudotuberculosis. The plague bacterium evolved from Y. pseudotuberculosis as recently as 1,500 to 2,000 years ago. Y. pseudotuberculosis leads to a relatively mild stomach infection in humans.

The key to the capacity of the plague bacterium to cause fatal infections in humans lies in the differences between the two species of bacteria. The plague bacterium has two movable genetic elements, plasmids, that Y. pseudotuberculosis lacks. On one of these plasmids the research team has identified a gene that codes for a previously described “mouse toxin” that is seen as a major part of the explanation for the high potency of the plague bacterium in causing disease.

The researchers have now shown that the gene, Ymt, is not at all involved in the infection of animals but instead is absolutely crucial to the ability of the bacterium to survive in fleas and thereby to spread the disease further. The ability to spread the disease via fleas represents a decisive step in the development of the plague bacterium. Thus, this ability arose in connection with the acquisition of the plasmid that hosts the Ymt gene.

The Umeå scientists arrived at these findings in collaboration with researchers from the Rocky Mountain Laboratories, NIH, Hamilton, and the University of Michigan Medical School, Ann Arbor, Michigan.

Ulrika Bergfors Kriström | alphagalileo

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>