Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc transporters regulate pancreatic cancer

14.11.2007
Zinc, an important trace element for healthy growth and development, can be related to pancreatic cancer. Too much ZIP4, a molecule that enables the transport of zinc into cells, promotes the growth and spread of pancreatic tumors cells, said a group of researchers from Baylor College of Medicine in Houston, The University of Texas M.D. Anderson Cancer Center and the University of Florida in Gainesville, in a report which appears online today in the Proceedings of the National Academy of Sciences.

“Zinc plays a critical role in our bodies functioning properly,” said Dr. Min Li, assistant professor of the Michael E. DeBakey Department of Surgery at BCM, and lead author of the study. “Zinc must be regulated through proteins called zinc transporters to keep us healthy.”

A previous study by one of Li’s collaborators, Dr. Craig Logsdon, professor and Lockton Distinguished Professor for Pancreatic Cancer Research at M.D. Anderson, identified high levels of ZIP4 in pancreatic cancer tissue. Li’s current study confirmed those findings and also showed that overexpressed ZIP4 increases zinc uptake by the cell, which results in significantly increased tumor growth.

“We need to put these in a big picture and look at the zinc and zinc transporters as a whole in regulating pancreatic cancer growth. There is no simple answer at this point on the role zinc itself is playing,” said Li.

“This study shows strong evidence that the zinc transporter is over expressed in pancreatic cancer,” said Dr. Changyi (Johnny) Chen, Molecular Surgery Endowed Chair, professor of surgery and vice chair for research in the Michael E. DeBakey Department of Surgery at BCM. “Our next step for research will ask why this happens in pancreatic cancer.”

Results showed that 16 of the 17 pancreatic cancer specimens and seven of the eight cell lines grown in the laboratory had higher levels of ZIP4 than healthy tissues and normal pancreatic ductal cells. Researchers then introduced ZIP4 protein into the one pancreatic cancer cell line that did not already over express the molecule. Compared to the original line, the new cells accumulated 73 percent more zinc and significantly increased tumor growth.

This is the first comprehensive study to focus on pancreatic cancer and zinc transporters which has not been previously described. More research is needed before doctors know if limiting or targeting zinc or ZIP4 would affect the progression of pancreatic cancer.

“This study has tremendous impact on pancreatic cancer research because it not only suggests a novel diagnostic marker, but also indicates a candidate for cancer vaccine development” said Dr. Qizhi (Cathy) Yao, professor of the Michael E. DeBakey Department of Surgery and molecular virology & microbiology at BCM.

“Identifying this molecule as being related to tumor growth opens up a door for us, “said Logsdon. “Our hope is that this will lead to a target for new treatments and therapies.”

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>