Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc transporters regulate pancreatic cancer

14.11.2007
Zinc, an important trace element for healthy growth and development, can be related to pancreatic cancer. Too much ZIP4, a molecule that enables the transport of zinc into cells, promotes the growth and spread of pancreatic tumors cells, said a group of researchers from Baylor College of Medicine in Houston, The University of Texas M.D. Anderson Cancer Center and the University of Florida in Gainesville, in a report which appears online today in the Proceedings of the National Academy of Sciences.

“Zinc plays a critical role in our bodies functioning properly,” said Dr. Min Li, assistant professor of the Michael E. DeBakey Department of Surgery at BCM, and lead author of the study. “Zinc must be regulated through proteins called zinc transporters to keep us healthy.”

A previous study by one of Li’s collaborators, Dr. Craig Logsdon, professor and Lockton Distinguished Professor for Pancreatic Cancer Research at M.D. Anderson, identified high levels of ZIP4 in pancreatic cancer tissue. Li’s current study confirmed those findings and also showed that overexpressed ZIP4 increases zinc uptake by the cell, which results in significantly increased tumor growth.

“We need to put these in a big picture and look at the zinc and zinc transporters as a whole in regulating pancreatic cancer growth. There is no simple answer at this point on the role zinc itself is playing,” said Li.

“This study shows strong evidence that the zinc transporter is over expressed in pancreatic cancer,” said Dr. Changyi (Johnny) Chen, Molecular Surgery Endowed Chair, professor of surgery and vice chair for research in the Michael E. DeBakey Department of Surgery at BCM. “Our next step for research will ask why this happens in pancreatic cancer.”

Results showed that 16 of the 17 pancreatic cancer specimens and seven of the eight cell lines grown in the laboratory had higher levels of ZIP4 than healthy tissues and normal pancreatic ductal cells. Researchers then introduced ZIP4 protein into the one pancreatic cancer cell line that did not already over express the molecule. Compared to the original line, the new cells accumulated 73 percent more zinc and significantly increased tumor growth.

This is the first comprehensive study to focus on pancreatic cancer and zinc transporters which has not been previously described. More research is needed before doctors know if limiting or targeting zinc or ZIP4 would affect the progression of pancreatic cancer.

“This study has tremendous impact on pancreatic cancer research because it not only suggests a novel diagnostic marker, but also indicates a candidate for cancer vaccine development” said Dr. Qizhi (Cathy) Yao, professor of the Michael E. DeBakey Department of Surgery and molecular virology & microbiology at BCM.

“Identifying this molecule as being related to tumor growth opens up a door for us, “said Logsdon. “Our hope is that this will lead to a target for new treatments and therapies.”

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>