Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson neuroscientists show anti-inflammation molecule helps fight MS-like disease

14.11.2007
An immune system messenger molecule that normally helps quiet inflammation could be an effective tool against multiple sclerosis (MS). Neurology researchers led by Abdolmohamad Rostami, M.D., Ph.D., professor and chair of the Department of Neurology at Jefferson Medical College of Thomas Jefferson University and the Jefferson Hospital for Neuroscience in Philadelphia, have found that the protein interkeukin-27 (IL-27) helped block the onset or reverse symptoms in animals with an MS-like disease.

The results suggest that IL-27 may someday be part of a therapy to temper over-active immune responses, which are thought to be at the heart of MS, an autoimmune disease (in which the body attacks its own tissue) affecting the central nervous system. The Jefferson neuroscientists report their findings November 11, 2007 in the journal Nature Immunology. The paper first appears in an advance online publication.

In MS, one of the most common neurological diseases affecting young adults, the myelin coating of nerve fibers becomes inflamed and scarred. As a result, “messages” cannot be sent through the nervous system. Dr. Rostami’s team was trying to understand the mechanisms of how immune responses damage the myelin sheath and axons in the brain.

They had previously observed that IL-27, a signaling molecule called a cytokine, could suppress IL-17, another cytokine, and inflammation. They also knew that in other MS models, mice that lacked receptors for IL-27 developed excessive inflammation.

Dr. Rostami, who is also director of the Neuroimmunology Laboratory in the Department of Neurology at Jefferson Medical College, Denise Fitzgerald, Ph.D., a postdoctoral research fellow in Dr. Rostami’s laboratory, and their colleagues used an animal model of MS called experimental autoimmune encephalomyelitis (EAE) for the investigation.

When the scientists gave IL-27 to the experimental mice, it significantly suppressed active disease. They saw similar effects from IL-27 in cultured cells that were transferred into “naïve” animals, which then produced significantly milder disease. At the same time, they also showed that IL-27 enhanced the production of IL-10, a crucial anti-inflammatory cytokine.

“We previously showed that IL-27 could suppress IL-17,” he notes. “Here we also show that IL-27 can enhance the production of IL-10. These may both be different and complementary mechanisms by which IL-27 can suppress EAE.”

The findings suggest that increasing IL-27 concentrations might raise IL-10 levels, and help quell an over-active immune response. “This is the first time that we have direct evidence that by actively giving IL-27 like a drug, we can suppress EAE in mice.”

Dr. Rostami explains that after an MS flare-up, patients recover from the disease, though the reasons are poorly understood. “We think that one of the ways that recovery from a disease flare-up occurs is that part of the immune system is shut off, suppressing the immune response in the brain. IL-27 appears to be crucial in this process,” he says.

The team would like to study MS patients’ blood samples to see if similar processes are at work, Dr. Rostami notes. “If we get similar findings in human disease, then perhaps IL-27 could be used therapeutically as a compound to suppress inflammation in the brains of MS patients.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>