Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests targeted treatment strategies for lupus

14.11.2007
New research provides clues about the causes of lupus symptoms and suggests specific new targeted treatment strategies, according to Nilamadham Mishra, M.D., from Wake Forest University Baptist Medical Center, in presentations this week at the American College of Rheumatology in Boston.

The studies looked at premature atherosclerosis in lupus patients as well as accelerated cell death that seems to be behind many of the disease’s symptoms. Lupus is an autoimmune disorder that can involve the joints, kidneys, heart, lungs, brain and blood. An estimated two million Americans have a form of lupus.

In one study, Mishra and colleagues looked at the potential mechanisms of premature atherosclerosis, which is one of the leading causes of death and disability in lupus patients. Even when they take drugs to lower their cholesterol, lupus patients still develop fatty buildups in their vessels, which can lead to heart attack and stroke.

Previous research by Mishra found that a new class of drugs being developed (histone deacetylase inhibitors) were effective at preventing atherosclerosis in mice prone to develop the disease. In the current study, Mishra and colleagues explored whether it is a specific histone deacetylase, number 9 (HDAC9), that causes the problem.

Histones are considered the master regulators in gene expression, and Mishra was the first to establish an association between abnormal histone codes and the complications of lupus in a mouse model of lupus.

In the current study, the researchers found that in atherosclerosis-prone mice, there is more HDAC9 than usual in the macrophages, which are cells within the artery walls that collect cholesterol and can lead to atherosclerosis. They found that these increased levels of HDAC9 increase inflammation in the arteries as well as the buildup of fatty tissue that may break off and cause a heart attack or stroke.

In mice macrophages that were genetically engineered to have no HDAC9, the researchers found the production of chemicals that promote inflammation were reduced and levels of cholesterol deposits were reduced compared to mice that produced normal levels of HDAC9.

“With the drug that inhibits HDAC9, we were able to decrease inflammation and remove cholesterol at the same time,” said Mishra. “This study suggests that specifically targeting HDAC9 without inhibiting other histone deacetylases will be helpful for atherosclerosis.”

In a separate study, scientists found a potential explanation for why cells in lupus patients die at an increased rate and accumulate in tissues. This accumulation of cells is believed to trigger the inflammation that causes symptoms.

“We have not previously understood why cells die at an increased rate,” said Mishra. “This new study suggests both a possible mechanism and treatment.”

The study examined microRNAs, chains of ribonucleic acid that are involved in cell proliferation and cell death. The goal was to explore the possibility that aberrant expression of microRNAs is responsible for the abnormal cell death in lupus patients.

The scientists analyzed blood samples from five patients with lupus and seven healthy people of the same ages and sex at two points during a three-month period. A particular microRNA, miR-16, was consistently increased in lupus patients compared to the healthy participants. The scientists suspect that having too much miR-16 inhibits genes that control cell death and may also inhibit natural cell progression – resulting in the accumulation in tissues.

“Understanding this connection may lead to targeted treatments to decrease levels of miR-16,” said Mishra.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>