Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scottish Scientist’s To Develop ‘While-U-Wait’ Contaminated-Food Detector

13.11.2007
A group of Scottish scientists have received funding to mass-produce a revolutionary food testing kit that will detect the presence of a host of potentially fatal contaminants within hours - making it the fastest such technology in the world.

By 2010 the project, based at The Macaulay Institute, Aberdeen, will roll out technology that will cut detection times for food poisoning bugs such as Compylobacter, Listeria and Salmonella from six days to just five hours.

According to the Macaulay Institute’s Dr Brajesh Singh, who leads the project, the new technology could prevent thousands of deaths every year from food poisoning outbreaks.

“The conventional methods for detecting food contamination used by industries and regulatory agencies are labour intensive, time consuming and costly. Our proposed technology offers for the first time, at low cost, the simultaneous detection of multiple contaminants within five to eight hours, and has the potential to revolutionise the food safety industry and save lives through prevention of food poisoning epidemics.

“We believe that this technology provides a real opportunity to make Scotland a world-leader in microbial diagnostics and industrial microbiology. A combination of an excellent skill base, innovative science, leading regulatory agencies, and industrial track-record places Scotland at the forefront of this technological arena.”

“The project will allow Scotland to compete with North America and Continental Europe in this growing market, which estimates suggest will be worth US$2.4 billion by 2010 for the food sector alone.”

While the technology will initially focus on contaminant detection in food and the environment, it has wider applications and will be attractive to healthcare, forensic and remediation industries.

There is also the potential for this technology to be used in the future to quickly detect hospital super bugs such as MRSA, said Dr Singh.

He added: “By proving the concept within two years, the project will achieve a technology that can be licensed to a range of industries or service providers in microbial diagnostics. It will also be marketed through a spin-out company which will manufacture the necessary kits and create a service centre for the UK, leading to new job opportunities in Scotland. These jobs will be in food, environmental and clinical industries.”

Funded by Scottish Enterprise’s Proof of Concept programme, the £246K project’s aim is to be selling products worldwide by 2010 via a spin-out company, which will also analyse food samples and develop more products.

The test kit works by analysing a food sample for specific food pathogens. It will detect multiple microbial contaminants in food, water and environmental samples. This unique method allows dual detection of pathogens and determines if they are capable of producing toxins or whether they have antibiotic resistance. It offers improved diagnostic potential to identify the source of contamination and therefore save lives.

Dr Singh said: “It is also very sensitive and can be used to accurately determine the level of contamination - which is a limitation of present methodologies. Once proven the technology will reduce running costs and allow more frequent and comprehensive surveillance of food safety, improving public health protection and food quality management systems.”

The project also involves Dr Colin Campbell and Dr Fiona Moore of the Macaulay Institute, and Mr Iain Ogden from the University of Aberdeen.

This announcement comes just a week after the high-profile international soil forensics conference organised by the Macaulay Institute.

Dave Stevens | alfa
Further information:
http://www.macaulay.ac.uk

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>