A cough suppressant and a drug tested as a schizophrenia therapy curb the involuntary movements that are disabling side effects of taking the Parkinson's disease medication levodopa, Portland scientists have found.
Dextromethorphan, used in such cold and flu medications as Robitussin, Sucrets, Triaminic and Vicks, suppresses dyskinesias in rats, researchers at Oregon Health & Science University and the Portland Veterans Affairs Medical Center found. Dyskinesias are the spastic or repetitive motions that result from taking levodopa, or L-dopa, over long periods.
The researchers also found that BMY-14802, a drug previously tested in people with schizophrenia and found to be safe – although not effective in treating schizophrenia symptoms – suppressed dyskinesias in rats more effectively than dextromethorphan did, suggesting that BMY-14802 might work to block dyskinesias in people with Parkinson's.
"These results were unexpected, but very exciting," said the study's lead author, Melanie A. Paquette, Ph.D., postdoctoral fellow in the Department of Behavioral Neuroscience, OHSU School of Medicine, and the PVAMC. "We have filed a patent for the use of BMY-14802 for dyskinesias and we hope to get funding to begin human trials very soon."
The study, titled "Differential effects of NMDA antagonists and sigma ligands on L-dopa-induced behavior in the hemiparkinson rat," is being presented during a poster session today at Neuroscience 2007, the 37th annual Society for Neuroscience conference in San Diego.
The results also affirm the value of the rat model for dyskinesias that Paquette's team used in the study. Previous studies by other researchers have shown the drug amantadine already is effective in treating dyskinesias in both humans and rats, and dextromethorphan's effectiveness against the condition in rats provides more data supporting the use of the model.
"Basically, these two drugs work to block dyskinesias in both humans and rats, and that means the rats are a good model to screen potential drug treatments for humans with dyskinesias," Paquette said.
But BMY-14802, which is an antagonist at sigma-1 receptor sites in the brain, "worked much better than dextromethorphan," an antagonist at N-methyl-D-aspartate (NMDA) receptors.
"There's something special about BMY-14802," Paquette explained. "The effect on dyskinesias is really striking and I've repeated it several times, so it's a reliable finding. It's a very exciting result."
Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu
http://www.ohsu.edu/news/
GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University
Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy