Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA technology helps predict and prevent future pandemic outbreaks

08.11.2007
Research presented at the American Society of Tropical Medicine and Hygiene Meeting in Philadelphia

With the help of 14 satellites currently in orbit and the National Aeronautics and Space Administration’s (NASA) Applied Sciences Program, scientists have been able to observe the Earth’s environment to help predict and prevent infectious disease outbreaks around the world.

The use of remote sensing technology aids specialists in predicting the outbreak of some of the most common and deadly infectious diseases today such as Ebola, West Nile virus and Rift Valley Fever. The ability of infectious diseases to thrive depends on changes in the Earth’s environment such as the climate, precipitation and vegetation of an area.

Through orbiting satellites, data is collected daily to monitor environmental changes. That information is then passed on to agencies such as the Centers for Disease Control and Prevention and the Department of Defense who then apply the data to predict and track disease outbreaks and assist in making public health policy decisions. “The use of this technology is not only essential for the future of curbing the spread of infectious diseases,” explains John Haynes, public health program manager for the NASA Earth Science Applied Sciences Program. “NASA satellites are also a cost-effective method for operational agencies since they are already in orbit and in use by scientists to collect data about the Earth’s atmosphere.”

Remote sensing technology not only helps monitor infectious disease outbreaks in highly affected areas, but also provides information about possible plague-carrying vectors -- such as insects or rodents -- globally and within the U.S. The Four Corners region, which includes Colorado, New Mexico, Arizona, and Utah, is a highly susceptible area for plague and Hanta virus outbreaks, and by understanding the mixture of vegetation, rainfall and slope of the area, scientists can predict the food supply of disease transmitting vectors within the region and the threat they cause to humans. Because plague is also considered a bioterrorism agent, NASA surveillance systems enable scientists to decipher if an outbreak was caused by natural circumstances or was an act of bioterrorism.

A particular infectious disease being targeted by NASA is malaria, which affects 300-500 million persons worldwide, leaving 40 percent of the world at risk of infection. The Malaria Modeling and Surveillance Project utilizing NASA satellite technology is currently in use by the Armed Forces Research Institute of Medical Sciences in Thailand and the U.S. Naval Medical Research Unit located in Indonesia. Data collected at these locations is combined and used to monitor environmental characteristics that effect malaria transmission in Southeast Asia and other tropical and subtropical regions. Malaria surveillance provides public health organizations with increased warning time to respond to outbreaks and assistance in the preparation and utilization of pesticides, which leads to a reduction in drug resistant strains of malaria and damage to the environment.

“NASA satellite remote sensing technology has been an important tool in the last few years to not only provide scientists with the data needed to respond to epidemic threats quickly, but to also help predict the future of infectious diseases in areas where diseases were never a main concern,” says Mr. Haynes. “Changing environments due to global warming have the ability to change environmental habitats so drastically that diseases such as malaria may become common in areas that have never been previously at-risk.”

Jennifer Bender | EurekAlert!
Further information:
http://www.environics-usa.com

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>