Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA technology helps predict and prevent future pandemic outbreaks

08.11.2007
Research presented at the American Society of Tropical Medicine and Hygiene Meeting in Philadelphia

With the help of 14 satellites currently in orbit and the National Aeronautics and Space Administration’s (NASA) Applied Sciences Program, scientists have been able to observe the Earth’s environment to help predict and prevent infectious disease outbreaks around the world.

The use of remote sensing technology aids specialists in predicting the outbreak of some of the most common and deadly infectious diseases today such as Ebola, West Nile virus and Rift Valley Fever. The ability of infectious diseases to thrive depends on changes in the Earth’s environment such as the climate, precipitation and vegetation of an area.

Through orbiting satellites, data is collected daily to monitor environmental changes. That information is then passed on to agencies such as the Centers for Disease Control and Prevention and the Department of Defense who then apply the data to predict and track disease outbreaks and assist in making public health policy decisions. “The use of this technology is not only essential for the future of curbing the spread of infectious diseases,” explains John Haynes, public health program manager for the NASA Earth Science Applied Sciences Program. “NASA satellites are also a cost-effective method for operational agencies since they are already in orbit and in use by scientists to collect data about the Earth’s atmosphere.”

Remote sensing technology not only helps monitor infectious disease outbreaks in highly affected areas, but also provides information about possible plague-carrying vectors -- such as insects or rodents -- globally and within the U.S. The Four Corners region, which includes Colorado, New Mexico, Arizona, and Utah, is a highly susceptible area for plague and Hanta virus outbreaks, and by understanding the mixture of vegetation, rainfall and slope of the area, scientists can predict the food supply of disease transmitting vectors within the region and the threat they cause to humans. Because plague is also considered a bioterrorism agent, NASA surveillance systems enable scientists to decipher if an outbreak was caused by natural circumstances or was an act of bioterrorism.

A particular infectious disease being targeted by NASA is malaria, which affects 300-500 million persons worldwide, leaving 40 percent of the world at risk of infection. The Malaria Modeling and Surveillance Project utilizing NASA satellite technology is currently in use by the Armed Forces Research Institute of Medical Sciences in Thailand and the U.S. Naval Medical Research Unit located in Indonesia. Data collected at these locations is combined and used to monitor environmental characteristics that effect malaria transmission in Southeast Asia and other tropical and subtropical regions. Malaria surveillance provides public health organizations with increased warning time to respond to outbreaks and assistance in the preparation and utilization of pesticides, which leads to a reduction in drug resistant strains of malaria and damage to the environment.

“NASA satellite remote sensing technology has been an important tool in the last few years to not only provide scientists with the data needed to respond to epidemic threats quickly, but to also help predict the future of infectious diseases in areas where diseases were never a main concern,” says Mr. Haynes. “Changing environments due to global warming have the ability to change environmental habitats so drastically that diseases such as malaria may become common in areas that have never been previously at-risk.”

Jennifer Bender | EurekAlert!
Further information:
http://www.environics-usa.com

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>