Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity research boosted by watching hunger in the brain

08.11.2007
Scientists can now measure how full or hungry a mouse feels, thanks to a new technique which uses imaging to reveal how neurons behave in the part of the brain which regulates appetite.

Researchers hope the technique, which uses magnetic resonance imaging, will enable a far greater understanding of why certain people become obese when others do not, and why different people have different appetites. The new study, led by researchers from Imperial College London, is described in a paper published today in the Journal of Neuroscience.

It had previously been very difficult to measure satiety, which is the psychological feeling of being full and satisfied rather than physical fullness. To judge satiety scientists have relied on asking volunteers in trials how full they feel, or watching how much food is eaten, rather than using more objective measures.

Scientists had already identified the part of the hypothalamus area of the brain which regulates appetite. In the new study, the researchers discovered that they could see the neurons there firing if they used a contrast agent of manganese ion to make the neurons visible on a magnetic resonance imaging scan.

When the mouse was hungry and hence the neurons showed increased activity, the contrast agent was taken up, making the neurons ‘light up’ on the scan. The intensity of this signal decreased as the mouse became less hungry and the neurons became less active.

Scientists already use different contrast agents to look at the anatomy of different cells in the body. The new research is the first to identify which contrast agent is taken up by the ‘hunger’ neurons and hence allow researchers to observe how they behave in response to different stimuli.

Professor Jimmy Bell, corresponding author of the study from the MRC Clinical Sciences Centre at Imperial College London, said: “Appetite and appetite control are important components of why people put on weight. We know very little about the mechanisms behind these processes and why they can vary so much between individuals. In the past we have had to rely on asking people how hungry they feel, this can be very subjective. Furthermore, sometimes your sense of satiety can be significantly affected by other factors such as your mood.

“Our new method is much more reliable and completely objective. With murine models, we can now look directly at neuronal activity in the brain. We are working on developing similar methods to study neuronal activity in the appetite centers in people,” he added.

For the study, mice given the contrast agent were also given one of two types of hormone. These were either pancreatic peptide YY (PYY), which is known to inhibit appetite, or ghrelin, which is known to increase it. The scientists then monitored the reactions of the ‘hunger’ neurons to these stimuli. As expected, the intensity of the neurons’ signals increased when ghrelin was administered and decreased with PYY.

The study was funded by the UK Medical Research Council, the Wellcome Trust, the UK Biotechnology Biological Services Research Council and the UK Department of Health.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>