Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity research boosted by watching hunger in the brain

08.11.2007
Scientists can now measure how full or hungry a mouse feels, thanks to a new technique which uses imaging to reveal how neurons behave in the part of the brain which regulates appetite.

Researchers hope the technique, which uses magnetic resonance imaging, will enable a far greater understanding of why certain people become obese when others do not, and why different people have different appetites. The new study, led by researchers from Imperial College London, is described in a paper published today in the Journal of Neuroscience.

It had previously been very difficult to measure satiety, which is the psychological feeling of being full and satisfied rather than physical fullness. To judge satiety scientists have relied on asking volunteers in trials how full they feel, or watching how much food is eaten, rather than using more objective measures.

Scientists had already identified the part of the hypothalamus area of the brain which regulates appetite. In the new study, the researchers discovered that they could see the neurons there firing if they used a contrast agent of manganese ion to make the neurons visible on a magnetic resonance imaging scan.

When the mouse was hungry and hence the neurons showed increased activity, the contrast agent was taken up, making the neurons ‘light up’ on the scan. The intensity of this signal decreased as the mouse became less hungry and the neurons became less active.

Scientists already use different contrast agents to look at the anatomy of different cells in the body. The new research is the first to identify which contrast agent is taken up by the ‘hunger’ neurons and hence allow researchers to observe how they behave in response to different stimuli.

Professor Jimmy Bell, corresponding author of the study from the MRC Clinical Sciences Centre at Imperial College London, said: “Appetite and appetite control are important components of why people put on weight. We know very little about the mechanisms behind these processes and why they can vary so much between individuals. In the past we have had to rely on asking people how hungry they feel, this can be very subjective. Furthermore, sometimes your sense of satiety can be significantly affected by other factors such as your mood.

“Our new method is much more reliable and completely objective. With murine models, we can now look directly at neuronal activity in the brain. We are working on developing similar methods to study neuronal activity in the appetite centers in people,” he added.

For the study, mice given the contrast agent were also given one of two types of hormone. These were either pancreatic peptide YY (PYY), which is known to inhibit appetite, or ghrelin, which is known to increase it. The scientists then monitored the reactions of the ‘hunger’ neurons to these stimuli. As expected, the intensity of the neurons’ signals increased when ghrelin was administered and decreased with PYY.

The study was funded by the UK Medical Research Council, the Wellcome Trust, the UK Biotechnology Biological Services Research Council and the UK Department of Health.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>